
Adding Multiple Interface Support in NS-2

Ramón Agüero Calvo

University of Cantabria

ramon@tlmat.unican.es

Jesús Pérez Campo

University of Cantabria

jesus@tlmat.unican.es

January, 2007

Copyright (c) 2007 Ramón Agüero.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled “GNU Free Documentation
License”.

Acknowledgments

The author would like to thank all the people who have contributed to en-
hance this document with their comments and suggestions. Ramón Agüero
would like to acknowledge the help provided by Rubén Ansótegui Boada,
who compiled all the changes which were needed on the AODV code, and
helped to build the corresponding section on the document.

Contents

1 Introduction 8
1.1 Related Work . 8

1.1.1 MITF . 8
1.1.2 TENS . 9
1.1.3 Hyacinth . 9

1.2 Objective of the Document . 10
1.3 Structure of the Document . 10
1.4 Disclaimer . 10

2 Multiple Interface Model 11
2.1 Requirements and Working Assumptions . 11
2.2 Multiple Interface Node Model . 13

3 Changes on Tcl Code 15
3.1 Introduction . 15
3.2 Changes on ns-lib.tcl . 15
3.3 Changes on ns-mobilenode.tcl . 21

4 Changes on C++ Code 33
4.1 Introduction . 33
4.2 Changes on mobilenode.[cc,h] . 33
4.3 Changes on channel.cc . 34
4.4 Changes on mac-802 11.cc . 35

5 Changes on Routing Protocol Code 36
5.1 Introduction . 36
5.2 Changes on routing agent implementation . 36
5.3 Changes on the Route Table . 39
5.4 Illustrative example: AODV . 39

5.4.1 Changes in aodv.h . 39
5.4.2 Changes in aodv.cc . 40
5.4.3 Changes on the routing table implementation aodv rtable.[cc,h] . 57

6 Scenario Script 60

7 Future Work 63

3

CONTENTS

A GNU Free Documentation License 65

4

List of Figures

2.1 MobileNode Architecture . 12
2.2 Modified MobileNode architecture, with multiple interface support 14

5

Listings

3.1 (ns-lib.tcl) Procedure to change the number of interfaces 15
3.2 (ns-lib.tcl) Procedure to add an interface on a node 16
3.3 (ns-lib.tcl) Procedure to get the number of interfaces 16
3.4 (ns-lib.tcl) Procedure to add multiple interfaces as an argument to node-

config label . 16
3.5 (ns-lib.tcl) Changes on node-config procedure 16
3.6 (ns-lib.tcl) Changes on create-wireless-node procedure 18
3.7 (ns-mobilenode.tcl) Changes on add-target procedure 22
3.8 (ns-mobilenode.tcl) Changes on add-target-rtagent procedure 24
3.9 (ns-mobilenode.tcl) Changes on add-interface procedure 26
3.10 (ns-mobilenode.tcl) MobileNode init procedure 31
3.11 (ns-mobilenode.tcl) MobileNode reset procedure 32
4.1 (mobilenode.h) New declaration of MobileNode lists within MobileNode class 33
4.2 (mobilenode.h) New getLoc method declaration within MobileNode class . . 34
4.3 (mobilenode.cc) getLoc method definition 34
4.4 (channel.cc) Accessing the appropriate MobileNode list 34
4.5 (channel.cc) affectedNodes method from the channel class 34
4.6 (mac-802 11.cc) Registering the correct MAC receiving interface within the

recv method of the Mac802 11 class . 35
5.1 (routingAgent.h) New class members to manage multiple interfaces 36
5.2 (routingAgent.cc) Changes on command method of the routing agent class . 37
5.3 (routingAgent.cc) Sending a broadcast packet 38
5.4 (routingAgent.cc) Sending a unicast packet 38
5.5 (routingAgent.cc) Getting the interface index 38
5.6 (aodv.h) Declaring the MAX IF constant . 39
5.7 (aodv.h) New members of the AODV class 39
5.8 (aodv.h) New members of the AODV class 40
5.9 (aodv.cc) Changes on the AODV constructor 41
5.10 (aodv.cc) Changes on the command method 41
5.11 (aodv.cc) Changes on the sendRequest method 43
5.12 (aodv.cc) Changes on the sendError method 45
5.13 (aodv.cc) Changes on the sendHello method 47
5.14 (aodv.cc) Changes on the sendReply method 48
5.15 (aodv.cc) Changes on the forward method 49
5.16 (aodv.cc) Changes on the recvRequest method 51
5.17 (aodv.cc) Changes on the recvReply method 54
5.18 (aodv.cc) Changes on the rt update method 57

6

LISTINGS

5.19 (aodv rtable.h) Changes on the aodv rt entry class definition 57
5.20 (aodv rtable.cc) Changes on the aodv rt entry constructor 58
6.1 (scen-script) Initialization of simulation variables 60
6.2 (scen-script) Creation of wireless channels 60
6.3 (scen-script) Initialization of the god . 60
6.4 (scen-script) node-config . 61
6.5 (scen-script) Creating a number of nodes with the same number of interfaces

associated to the same wireless channels . 61
6.6 (scen-script) Creating two nodes with different number of interfaces 61

7

Chapter 1

Introduction

There is now commonly accepted that the presence of multi-interface enabled devices is going
to be very likely in the near future. The rapid growth of IEEE 802.11 technology has eased
the sharp decrease of the corresponding products’ prices and therefore, their presence is
each day more and more common. This has gathered the interest of the Network Simulator

(ns) community, since a lot of researchers are willing to extend their simulation models to
incorporate multiple interfaces.

This document aims at being a guide for all researchers that want to incorporate multiple
channel support to the core of the current version of the simulator ns, ns-2. In this sense,
there has been quite a lot of discussion about this topic in the corresponding mailing-lists
and fora. There are some other people who have already addressed the same aspect; however,
our understanding is that the available information is not complete or it is very specific to
certain problems, so our goal is to provide a more generic solution, allowing the user to have
complete flexibility when configuring the scenario.

1.1 Related Work

As has been mentioned before, we have seen quite a lot of interest from the ns community in
trying to accommodate multiple interfaces in the simulator model. Some of the approaches
that have been used are, or have been, public available. In the remaining of this section,
we will analyze three of the most relevant approaches. Although none of them completely
fulfilled our requirements, they definitively provided us with interesting ideas. Below we
discuss the main characteristics of each of them, enumerating also the main drawbacks they
had, according to our view.

1.1.1 MITF

This is a project not longer active, which was carried out at the University of Rı́o de Janeiro.
The goal was to implement multiple interfaces, and to adapt the AODV routing protocol
accordingly, and it was done using ns-2.28. However, since the project stopped, it was not
possible to fully evaluate concrete results of this research.

Most of the modifications that were made on the simulator were within its C++ files.
More specifically, for all the different modules which are part of the MobileNode architecture
(see Chapter 1.3, e.g. LL, ARP, MAC, etc, arrays (lists of variables) with as many elements

8

Chapter 1. Introduction

as the maximum number of channels that could be simulated were used, instead of simple
variables, which is the original approach used by the simulator. In this way, it was possible
to refer to the appropriate module (array model) using the correct channel as an index to
locate the corresponding target within the aforementioned list. In addition, two new arrays
were created in the MobileNode class, so as to manage the lists of nodes associated to each
channel, again using the channel as the index to access these two new arrays.

On the other hand, both the Tcl and the implementation of the AODV routing agent were
modified so that the multi-interface capability could be exploited from the routing protocol.
Although the development was not completely finished, we got a number of interesting ideas,
which we partially used in our own development.

1.1.2 TENS

This project [1] was done at the Indian Institute of Technology of Kanpur, India. Its main
objective was to improve the ns-2.1b9a implementation of the IEEE 802.11 protocol on various
aspects, like the MAC and physical layers’ model, as well as adding multiple interface support
for that specific ns version. The implemented multi-interface model is based on multiplexing,
within the C++ implementation of the physical layer; a channel number, specified from the
Tcl script, was used to select the appropriate channel. This multi-interface model aimed at
emulating the different channels used by the DSSS version of the IEEE 802.11 standard (also
accounting for the interference) and does not really reflect the requirements we originally had
(see Chapter 2), since we were willing to create a number of orthogonal interfaces, mainly on
Tcl, bringing about the possibility of implementing heterogenous interfaces.

This implementation modified different C++, as well as Tcl, files. One of the most im-
portant aspects was the way different interfaces were incorporated into the node from the Tcl

code; the approach is quite similar to the one used by the Hyacinth project (see Section 1.1.3).
In this case a loop was added to the add-interface procedure of the ns-mobilenode.tcl

file, so as to create more than one complete physical layers, i.e. embracing MAC, LL and IFQ
(see Chapter 2), per node. This method is of particular interest in our implementation, as
will be discussed later.

1.1.3 Hyacinth

This is probably the closest work to ours. The corresponding project was originally carried out
at the the State University of New York for ns-2.1b9a [2], and there is available information
on how to use it over ns-2.29 [3, 4]. Its main drawback is that it provides quite a static
configuration, in which all nodes within the scenario need to incorporate up to 5 different
interfaces; in addition, a static (manual configurable) routing agent was implemented to use
this multi-channel capability, and according to our best knowledge, there is not available
information on how to modify existing routing agents (e.g. AODV) so as to be able to use
the multi-interface capability.

After defining up to 11 different channels (thus emulating the IEEE 802.11b physical layer)
in the simulator script, five of them are assigned to each node, by means of the node-config

command. Hence, the corresponding procedures were added within the ns-lib.tcl file. Af-
terwards, the create-wireless-node procedure, also within the the same file, calls five times
the add-interface procedure, each of them with a different channel. To our best knowledge,
these code segments are always executed, no matter whether the user was interested in having

9

Chapter 1. Introduction

such number of interfaces within an specific node. Looking at the changes that are required
at the mac-802 11.cc file, it seems that in order to guarantee a correct behavior, all nodes
within the scenario need to have the same number of interfaces (5 in this case), and, in addi-
tion, there is a strong relationship between them, since they are always ordered according to
the channel they belong to.

On the other hand, as has been already mentioned, the original work was based on a
static, manual routing agent, which was configured (i.e. processes to add and delete routes)
from the scenario script. Therefore, it is not straightforward extending the use of multiple
interfaces to different routing protocols.

1.2 Objective of the Document

We have seen in the previous section that there is not a comprehensive, documented, way
to extend ns-2 model (at least according to our best knowledge) to add multiple interfaces
on a flexible way, nor instructions on how to modify routing protocols so as to be able to
use this new feature. Hence, the main goal of this technical report is to provide a extensive,
though concise, set of changes that need to be performed on the simulator framework, so as
to allow, first, to use a flexible number of interfaces per node (i.e. not all nodes within the
same scenario need to employ the same interfaces) and, second, to modify routing protocols
(existing and new ones) so as to be able to benefit from this capability.

On the other hand, the document assumes some basic knowledge about the ns framework.
The most comprehensive information can probably be found at its manual [5], but there are
several other sources available.

1.3 Structure of the Document

The report is organized as follows: next Chapter presents the revised architecture that we
implement, based on the original MobileNode, Chapter 3 describes the changes that are re-
quired in the Tcl code of the simulator, while Chapter 4 discusses which changes are required
in the C++ files. The latter does not include how routing agents need to be adapted so as
to use multiple interfaces, since this is discussed in Chapter 5. Chapter 6 describes a poten-
tial scenario script that could be used so as to introduce the multi-interface support in the
simulation, while Chapter 7 introduces some open future working items, which appear after
introducing the capability to incorporate multiple interfaces on the simulator architecture.

1.4 Disclaimer

We do not guarantee the correct operation of these instructions over all ns-2 versions, nor its
straightforward usage; interested users may need to perform some “additional” changes and
modifications. We will appreciate any feedback on the information provided within the text,
so as to make this report as thorough as possible.

10

Chapter 2

Multiple Interface Model

As we have discussed in the previous chapter, one of the results of our research about the
current situation on the extension of the Network Simulator framework to include multiple
interfaces was that none of the existing solutions completely fulfilled with our requirements.
In this chapter we will describe the architecture of the new MobileNode model that we have
implemented, based on the aspects we would like to have in the simulation.

It is worth mentioning that although the simulator has two different models for mobile
nodes, we will just focus on MobileNode, since the other one (SRNode) is only used by the DSR
protocol. However, we understand that the information provided within this document should
be enough so as to face the required changes also within the SRNode. Figure 2.1 shows the
original architecture of the MobileNode, which consists, below the “Routing Agent”, of a chain
of modules, emulating the different protocol stack entities that any host would have in the real
life: “Link Layer”, “MAC Protocol”, “ARP”, “Interface Queue”, “Network Interface”, all of
them connected to the same shared wireless channel. In addition, the “Propagation Model”
is used so as to simulate the effect of the real wireless channels on the transmitted signal;
more specifically, the propagation loss is modeled, either on a deterministic or a random way.

2.1 Requirements and Working Assumptions

In this section we present all the requirements that we would like to fulfill with our develop-
ment, and we also enumerate the working assumptions that we have made. First, we opted
for using different instances of the wireless channels at the Tcl level, rather than multiplexing
them on a single object (as was done e.g. by the TENS project, see Section 1.1.2), since this
is probably better aligned with the intrinsic architecture of the simulator. Using different in-
stances of the channel at the Tcl level provides also a greater flexibility and eases the changes
that are required within the corresponding C++ files. Another additional advantage of this
approach is that in this way it is easier to change their characteristics (e.g. transmitting
power or energy levels) from the scenario script. Hence, one aspect that will not be added to
our implementation is the inter-channel interference.

Furthermore, and in contrast with the previous works on this issue, one of the most relevant
aspects of our implementation is that it should allow the user to define a different number
of interfaces per node, i.e. not all nodes need to implement the same number of interfaces.
In addition, the number of channels used in a single simulation could also be parameterized
and nodes should be able to randomly connect to a subset of the defined wireless channels,

11

Chapter 2. Multiple Interface Model

Interface
Queue

Link Layer

MAC

Network
Interface

ARP

Propagation
Model

Channel

Application

Routing
Agent

255

Figure 2.1: MobileNode Architecture

thus giving a complete flexibility to the user. We understand that this level of flexibility,
that needs to be accomplished from the scenario script, would be really important so as to
evaluate different types of situations.

In addition, our intention is that the modified model could be used with any of the existing
(or new) routing agents (but the ones based on the SRNode), but it would also be nice being
able to maintain the legacy behavior of the simulator, so that already existing scripts would
still be valid. One of the drawbacks that we observed on the previous works on this aspect
is that they usually force the simulations to use their particular characteristics or, otherwise,
the simulator will not probably work properly.

Taking all the above into consideration we can summarize the requirements we would like
to cope with as follows:

• [REQ.1] The number of channels in a particular scenario should be modifiable.

12

Chapter 2. Multiple Interface Model

• [REQ.2] The number of interfaces per node is variable, and do not need to be the same
for all nodes within a single scenario.

• [REQ.3] Each node within the same scenario could connect to a different number of
channels (of the ones that had been previously defined).

• [REQ.4] Routing agents may take advantage of the modified model, but legacy opera-
tion of the simulator must be preserved, so as to ensure backwards compatibility.

2.2 Multiple Interface Node Model

Taking the discussion of the previous section into consideration, Figure 2.2 presents the high
level architecture of the “modified” MobileNode. As can be seen, each node would have as
many copies of the original chain of entities (the one shown before) as many interfaces it
has. In addition, the single module which is not repeated is the “Propagation Model”, since
our initial assumption was to work exclusively with IEEE 802.11 networks, in which nodes
could use more than one channel at the same time; in these circumstances, the use of a
single propagation model is sensible. However, it should not be too complicated being able
to extend the current model so as to be able to add flexibility also on the number and types
of propagation models to be used.

For incoming traffic, there are not many differences to the original operation of the sim-
ulator. Incoming packets arrive through the corresponding channel and travel through the
different entities in ascending order; since the last module of every interface, the “Link Layer”
is connected to the same common point (the “Address Multiplexer”, all packets are handled
by the appropriate agent (either the routing protocol or the application), independently of
the interface the originally arrived through.

On the other hand, for outgoing traffic, it is worth highlighting that the intelligence of
selecting the appropriate interface needs to be within the routing agent; as can be seen,
this is the point in which the decision needs to take place. In Chapter 5, the changes that
are required in their C++ implementation to be able to select the appropriate interface are
extensively discussed.

The following chapters describe the changes that are required in the simulator implemen-
tation so as to use the described model. As has been already mentioned, most of the changes
are carried out within the Tcl code (see Chapter 3), but in addition some C++ files need to
be modified (see chapter 4).

13

Chapter 2. Multiple Interface Model

Iface 0

Application

Routing Agent
255

Channel 0
Channel 1

Channel 2

Propagation
Model Iface 1 Iface 2

Figure 2.2: Modified MobileNode architecture, with multiple interface support

14

Chapter 3

Changes on Tcl Code

3.1 Introduction

As has been discussed within Chapter 2, we decided to base the multi-interface extension
mostly on the Tcl implementation of the simulator, since we believed that this would probably
better fit the intrinsic operation of the ns architecture. Most of the used Tcl procedures are
either within the tcl/lib/ns-lib.tcl or tcl/lib/ns-mobilenode.tcl files. In this chapter
we detail the changes that are required within each of them so as to extend the simulator to
be able to add multiple interfaces per node.

3.2 Changes on ns-lib.tcl

One aspect that is worth mentioning is that the developments described herewith do require
creating the channel before calling the node-config procedure (providing it as an argument),
instead of specifying the type of channel within the node-config call. Chapter 6 extensively
discusses the script that needs to be used so as to simulate multiple interfaces.

We need to create four new procedures. The first one change-numifs (see Listing 3.1) is
called before creating the wireless node, and allows the user to specify a different number of
interfaces per node. Obviously, if called only once, it will affect all nodes. This procedure,
as will be seen later, is called from the scenario script, and needs one argument, being the
number of interfaces that a particular node has.

Listing 3.1: (ns-lib.tcl) Procedure to change the number of interfaces

Simulator i n s tp r o c change−numifs {newnumifs } {
$ s e l f i n s t v a r numi fs
s e t numi fs $newnumifs

}

The second one allows to add an interface (channel) to a node; it must be called, also
from the scenario script, before the node is created, and requires two arguments: the first one
is the index of such interface within the node, while the second one is the channel itself (Tcl

object previously created).
The third procedure we have added within the ns-lib.tcl does not need to be called

from the scenario script, but is required so that we can gather the number of interfaces from

15

Chapter 3. Changes on Tcl Code

Listing 3.2: (ns-lib.tcl) Procedure to add an interface on a node

Simulator i n s tp r o c add−channel { indexch ch} {
$ s e l f i n s t v a r chan
s e t chan ($ indexch) $ch

}

other parts of the Tcl architecture, as will be seen later. It is called get-numifs and it is
shown in Listing 3.3.

Listing 3.3: (ns-lib.tcl) Procedure to get the number of interfaces

Simulator i n s tp r o c get−numifs { } {
$ s e l f i n s t v a r numi fs
i f [i n f o e x i s t s numi fs] {

r e turn $numifs
} e l s e {

r e turn ””
}

}

Last, we need to create another procedure, so that we can add the number of interfaces
as an argument to the node-config command of the Tcl script, as will be seen in Chapter 6.

Listing 3.4: (ns-lib.tcl) Procedure to add multiple interfaces as an argument to
node-config label

Simulator i n s tp r o c ifNum { va l } { $ s e l f s e t numi fs $va l}

In addition to the new ones shown above, two of the already existing procedures need to
be modified. The first one is node-config, in which we have to initialize the chan variable,
either as a single variable, if normal operation is being used, or as an array, when the multi-
interface is enabled. Furthermore, we add the numifs variable to the list of arguments passed
to the method. The changes are shown on Listing 3.5.

Listing 3.5: (ns-lib.tcl) Changes on node-config procedure

Simulator i n s tp r o c node−config args {
Obje c t : : i n i t−va r s {} i s de f ined in ˜ t c l c l / t c l− o b j e c t . t c l .
I t i n i t i a l i z e s a l l d e f a u l t v a r i a b l e s in the f o l l ow ing

way:
1 . Look f o r pa i r s o f {−cmd va l } in args
2 . I f ” $ s e l f $cmd $va l ” i s not va l i d then put i t in a

l i s t o f
arguments to be returned to the c a l l e r .
#
Since we do not handle unde f ined {−cmd va l } p a i r s , we

igno r e
return va lue from in i t−va r s {} .
s e t a rgs [eva l $ s e l f i n i t−va r s $args]

16

Chapter 3. Changes on Tcl Code

$ s e l f i n s t v a r addressType rout ingAgent propType
macTrace \

r oute rTrace agentTrace movementTrace channelType
channe l numifs \

chan topo Ins tance propIns tance mobi leIP rxPower \
change wrt Mike ’ s code

txPower id lePower satNodeType eotTrace

i f [i n f o e x i s t s macTrace] {
Simulator s e t MacTrace $macTrace

}
i f [i n f o e x i s t s r oute rTrace] {
Simulator s e t RouterTrace $routerTrace

}
i f [i n f o e x i s t s agentTrace] {
Simulator s e t AgentTrace $agentTrace

}
i f [i n f o e x i s t s movementTrace] {
Simulator s e t MovementTrace $movementTrace

}

change wrt Mike ’ s code
i f [i n f o e x i s t s eotTrace] {

Simulator s e t EotTrace $eotTrace
}

hacking f o r matching o ld cmu add− inter face
not good s t y l e , f o r back−compabil ity ONLY

#
Only c r e a t e 1 in s tance o f prop
i f { [i n f o e x i s t s p rop Ins tance]} {

i f { [i n f o e x i s t s propType] && [Simulator s e t
propInstCreated] == 0} {
warn ”Both propType and propInstance are s e t . propType

i s i g no r ed . ”
}

} e l s e {
i f { [i n f o e x i s t s propType]} {

s e t p rop Ins tance [new $propType]
Simulator s e t propInstCreated 1

}
}

Add mul t i− i n t e r fa c e suppo r t :
User can only s p e c i f y e i t h e r channelType (s i n g l e i n t e r f a c e

as
be fo r e) or channe l (mu l t i i n t e r f a c e)
I f both v a r i a b l e s are s p e c i f i e d , e r r o r !
i f { [i n f o e x i s t s channelType] && [i n f o e x i s t s channe l]} {

e r r o r ”Can ’ t s p e c i f y both channel and channelType, e r r o r ! ”
} e l s e i f { [i n f o e x i s t s channelType] && ! [i n f o e x i s t s

satNodeType]} {

17

Chapter 3. Changes on Tcl Code

Sing l e channe l , s i n g l e i n t e r f a c e
warn ” Please use −channel as shown in t c l /ex/

w i r e l e s s−mi t f . t c l ”
i f { ! [i n f o e x i s t s chan]} {

s e t chan [new $channelType]
}

} e l s e i f { [i n f o e x i s t s channe l]} {
Multiple channel, multiple interfaces
i f { [info exists numifs]} {

set chan(0) $channel
} else {

set chan $channel
}

}
i f [i n f o e x i s t s topo Ins tance] {

$propInstance topography $ topo Ins tance
}
se t addres s type , h i e r a r c h i c a l or expanded
i f { [s t r i n g compare $addressType ””] != 0} {

$ s e l f set−address− format $addressType
}
se t mobileIP f l a g
i f { [i n f o e x i s t s mobi leIP] && $mobi leIP == ”ON”} {

Simulator s e t mob i l e i p 1
} e l s e {

i f { [i n f o e x i s t s mobi leIP] } {
Simulator s e t mob i l e i p 0

}
}

}

The changes are highlighted with bold font on the above listing. As can be seen, we
maintain the legacy operation of the simulator, and we do only modify it provided that the
multi-interface extension has been set from the scenario script.

Listing 3.6 shows the other procedure which needs to be modified, create-wireless-node.
In this case, when the extension is being used, the add-interface procedure, which is defined
in the ns-mobilenode.tcl file, has to be called as many times as the number of interfaces
the node has, and a for loop is used for this.

Listing 3.6: (ns-lib.tcl) Changes on create-wireless-node procedure

Simulator i n s tp r o c create−wire le ss−node args {
$ s e l f i n s t v a r rout ingAgent wiredRouting propIns tance

l lType \
macType i fqType i f q l e n phyType chan antType

energyModel \
i n i t i a l E n e r g y txPower rxPower id lePower \
topo Ins tance l e v e l 1 l e v e l 2 i n e r rP r o c oute r rProc

FECProc numifs

Simulator s e t IMEPFlag OFF

18

Chapter 3. Changes on Tcl Code

cr ea t e node in s tance
s e t node [eva l $ s e l f create−node− instance $args]

ba s e s t a t i o n addres s s e t t i n g
i f { [i n f o e x i s t wiredRouting] && $wiredRouting == ”ON” }

{
$node base− s ta t ion [AddrParams addr2id [$node node−addr]]
}
switch −exact $rout ingAgent {
DSDV {

s e t ragent [$ s e l f create−dsdv−agent $node]
}
DSR {

$ s e l f at 0 . 0 ”$node star t−dsr ”
}
AODV {

s e t ragent [$ s e l f create−aodv−agent $node]
}
TORA {

Simulator s e t IMEPFlag ON
se t ragent [$ s e l f create−tora−agent $node]

}
DIFFUSION/RATE {

eva l $node addr $args
s e t ragent [$ s e l f c r eate−di f fus ion− ra te−agent $node]

}
DIFFUSION/PROB {

eva l $node addr $args
s e t ragent [$ s e l f c r ea te−d i f fu s i on−probab i l i ty−agent

$node]
}
Di r e c t ed D i f f u s i o n {

eva l $node addr $args
s e t ragent [$ s e l f c r eate−core−di f fus ion−rtg−agent $node

]
}
FLOODING {

eva l $node addr $args
s e t ragent [$ s e l f c r eate− f l ood ing−agent $node]

}
OMNIMCAST {

eva l $node addr $args
s e t ragent [$ s e l f create−omnimcast−agent $node]

}
DumbAgent {

s e t ragent [$ s e l f create−dumb−agent $node]
}
de f au l t {

puts ”Wrong node rout ing agent ! ”
e x i t

}
}

19

Chapter 3. Changes on Tcl Code

er rProc and FECProc are an opt ion un l i k e other
parameters f o r node i n t e r f a c e

i f ! [i n f o e x i s t i n e r rP r o c] {
s e t i n e r rP r o c ””

}
i f ! [i n f o e x i s t oute r rProc] {

s e t oute r rProc ””
}
i f ! [i n f o e x i s t FECProc] {

s e t FECProc ””
}

Adding I n t e r f a c e
i f { [info exist numifs] } {

for {set i 0} {$i < $numifs } { incr i} {
Add one interface per channel
$node add−interface $chan($i) $propInstance $llType

$macType \
$ifqType $i fqlen $phyType $antType

$topoInstance \
$inerrProc $outerrProc $FECProc

}
} else {

$node add−interface $chan $propInstance $llType $macType
\
$ifqType $i fqlen $phyType $antType $topoInstance \
$inerrProc $outerrProc $FECProc

}

Attach agent
i f { $rout ingAgent != ”DSR”} {

$node attach $ragent [Node s e t r t a g en t po r t]
}
i f { $rout ingAgent == ”DIFFUSION/RATE” | |

$rout ingAgent == ”DIFFUSION/PROB” | |
$rout ingAgent == ”FLOODING” | |
$rout ingAgent == ”OMNIMCAST” | |

$rout ingAgent == ” Di r e c t ed D i f f u s i o n ” } {
$ragent port−dmux [$node demux]
$node i n s t v a r l l
$ ragent add− l l $ l l (0)

}
i f { $rout ingAgent == ”DumbAgent” } {

$ragent port−dmux [$node demux]
}

Bind rout ing agent and mip agent i f e x i s t i n g ba s e s t a t i o n
addres s s e t t i n g

i f { [i n f o e x i s t wiredRouting] && $wiredRouting == ”ON” }
{

i f { $rout ingAgent != ”DSR” } {
$node mip−call $ ragent

20

Chapter 3. Changes on Tcl Code

}
}
#

This Trace Target i s used to l og changes in d i r e c t i o n
and v e l o c i t y f o r the mobile node.
#

s e t t r a c e f d [$ s e l f get−ns− tracea l l]
i f { $ t r a c e f d != ”” } {
$node nodetrace $ t r a c e f d
$node agent t r a ce $ t r a c e f d

}
s e t namtracefd [$ s e l f get−nam−traceall]
i f { $namtracefd != ”” } {

$node namattach $namtracefd
}
i f [i n f o e x i s t s energyModel] {

i f [i n f o e x i s t s l e v e l 1] {
s e t l 1 $ l e v e l 1

} e l s e {
s e t l 1 0 . 5

}
i f [i n f o e x i s t s l e v e l 2] {

s e t l 2 $ l e v e l 2
} e l s e {

s e t l 2 0 . 2
}
$node addenergymodel [new $energyModel $node \

$ i n i t i a l E n e r g y $ l1 $ l 2]
}
i f [i n f o e x i s t s txPower] {
$node setPt $txPower
}
i f [i n f o e x i s t s rxPower] {
$node setPr $rxPower
}
i f [i n f o e x i s t s id lePower] {
$node s e tP id l e $ id lePower
}

$node topography $ topo Ins tance

return $node
}

3.3 Changes on ns-mobilenode.tcl

In this case no new procedures were required, but rather some modifications have to be
performed to some of the already existing ones. These are explained in the remaining of this
section.

The first procedure which was modified is the add-target, which can be seen on List-

21

Chapter 3. Changes on Tcl Code

ing 3.7. First of all, the get-numifs procedure that was discussed before is called, so that
we can assess whether we are using the multi-interface extension and, if such is the case, the
number of interfaces that the current node has. Later, this number is used to call the “new”
if-queue command of the routing agent (see Chapter 5) as many times as the number of
interfaces the node has.

Listing 3.7: (ns-mobilenode.tcl) Changes on add-target procedure

Node/MobileNode i n s tp r o c add−target { agent port } {
$ s e l f i n s t v a r dmux imep toraDebug

s e t ns [Simulator in s tance]
s e t newapi [$ns imep−support]

$agent s e t s po r t $port

We get the number of interfaces from the simulator object
set numIfsSimulator [$ns get−numifs]

s p e c i a l p r o c e s s i n g f o r TORA/IMEP node
s e t to r aon ly [s t r i n g f i r s t ”TORA” [$agent i n f o c l a s s]]
i f { $toraonly != −1 } {

$agent if−queue [$ s e l f s e t i f q (0)] ;# i f q between LL and
MAC

#
XXX: The rout ing pro to co l and the IMEP agents needs

handles
to each o th e r .
#
$agent imep−agent [$ s e l f s e t imep (0)]
[$ s e l f s e t imep (0)] r tag ent $agent

}

Spec i a l p r o c e s s i n g f o r AODV
se t aodvonly [s t r i n g f i r s t ”AODV” [$agent i n f o c l a s s]]
i f {$aodvonly != −1 } {

$agent if−queue [$ s e l f s e t i f q (0)] ;# i f q between LL and
MAC

}

#<zheng : add>

Spec i a l p r o c e s s i n g f o r ZBR
#se t zbron ly [s t r i n g f i r s t ”ZBR” [$agent i n f o c l a s s]]
#i f { $zbronly != −1 } {
$agent if−queue [$ s e l f s e t i f q (0)] ;# i f q between LL and

MAC
#}
#</zheng : add>

i f { $port == [Node s e t r t a g en t po r t] } {
Special processing when multiple interfaces are supported
i f {$numIfsSimulator != ””} {

22

Chapter 3. Changes on Tcl Code

for {set i 0} {$i < [$ se l f set n i f s]} { incr i} {
$agent if−queue $i [$se l f set i fq ($i)]

}
}

Ad hoc rout ing agent setup needs s p e c i a l handl ing
$ s e l f add−target−rtagent $agent $port
return

}

Attaching a normal agent
s e t namfp [$ns get−nam−traceall]
i f { [S imulator s e t AgentTrace] == ”ON” } {

#
Send Target
#
i f {$newapi != ””} {

s e t sndT [$ s e l f mobi l i ty− trace Send ”AGT”]
} e l s e {

s e t sndT [cmu−trace Send AGT $ s e l f]
}
i f { $namfp != ”” } {

$sndT namattach $namfp
}
$sndT ta r g e t [$ s e l f entry]
$agent t a r g e t $sndT
#
Recv Target
#
i f {$newapi != ””} {

s e t rcvT [$ s e l f mobi l i ty− trace Recv ”AGT”]
} e l s e {

s e t rcvT [cmu−trace Recv AGT $ s e l f]
}
i f { $namfp != ”” } {

$rcvT namattach $namfp
}
$rcvT ta r g e t $agent
$dmux i n s t a l l $port $rcvT

} e l s e {
#
Send Target
#
$agent t a r g e t [$ s e l f entry]
#
Recv Target
#
$dmux i n s t a l l $port $agent

}
}

The second procedure that needs to be modified is the add-target-rtagent, which is

23

Chapter 3. Changes on Tcl Code

called from the previous one, when the agent is attached to the RT PORT port and, thus it
is a routing agent. As we did before, we use the get-numifs procedure to get the number
of interfaces that the node has (provided that the multi-hop extension is being used) and
we later use this variable so as to link the routing agent with the corresponding link layer
(ll) entities, which were initialized before, after the subsequent calls to the add-interface

procedure. The variable numIfsSimulator allows us to preserve the original behavior of the
simulator, since the legacy code is still used when this variable does not have a valid value.
We do this both when the tracing support is activated and when it is not.

Listing 3.8: (ns-mobilenode.tcl) Changes on add-target-rtagent procedure

Node/MobileNode i n s tp r o c add−target−rtagent { agent port } {
$ s e l f i n s t v a r imep toraDebug

s e t ns [Simulator in s tance]
s e t newapi [$ns imep−support]
s e t namfp [$ns get−nam−traceall]

s e t dmux [$ s e l f demux]
s e t c l a s s i f i e r [$ s e l f entry]

We see whether we have multiple interfaces in the simulation
set numIfsSimulator [$ns get−numifs]

l e t the rout ing agent know about the port dmux
$agent port−dmux $dmux

i f { [S imulator s e t RouterTrace] == ”ON” } {
#
Send Target
#
i f {$newapi != ””} {

s e t sndT [$ s e l f mobi l i ty− trace Send ”RTR”]
} e l s e {

s e t sndT [cmu−trace Send ”RTR” $ s e l f]
}
i f { $namfp != ”” } {

$sndT namattach $namfp
}
i f { $newapi == ”ON” } {

$agent t a r g e t $imep (0)
$imep (0) s endta rg e t $sndT
second t r a c e r to s e e the ac tua l
types o f to ra packets be fo r e imep packs them
i f { [i n f o e x i s t s toraDebug] && $toraDebug == ”ON”} {

s e t sndT2 [$ s e l f mobi l i ty− trace Send ”TRP”]
$sndT2 ta r g e t $imep (0)
$agent t a r g e t $sndT2

}
$sndT target [$se l f set l l (0)]

} else { ;# no IMEP
i f {$numIfsSimulator != ””} {

24

Chapter 3. Changes on Tcl Code

for {set i 0} {$i < [$ se l f set n i f s]} { incr i} {
set sndT [cmu−trace Send ”RTR” $se l f]
$agent target $i $sndT
$sndT target [$se l f set l l ($i)]

}
} else {

$agent target $sndT
$sndT target [$se l f set l l (0)]

}
}
#
Recv Target
#
i f {$newapi != ””} {

s e t rcvT [$ s e l f mobi l i ty− trace Recv ”RTR”]
} e l s e {

s e t rcvT [cmu−trace Recv ”RTR” $ s e l f]
}
i f { $namfp != ”” } {

$rcvT namattach $namfp
}
i f {$newapi == ”ON” } {

[$ s e l f s e t l l (0)] up−target $imep (0)
$ c l a s s i f i e r d e f a u l t t a r g e t $agent
need a second t r a c e r to s e e the ac tua l
types o f to ra packets a f t e r imep unpacks them
no need to support any h i e r node
i f { [i n f o e x i s t s toraDebug] && $toraDebug == ”ON” } {

s e t rcvT2 [$ s e l f mobi l i ty− trace Recv ”TRP”]
$rcvT2 ta r g e t $agent
$ c l a s s i f i e r d e f a u l t t a r g e t $rcvT2

}
} e l s e {

$rcvT ta r g e t $agent
$ c l a s s i f i e r d e f a u l t t a r g e t $rcvT
$dmux i n s t a l l $port $rcvT

}
} e l s e {

#
Send Target
#
i f to ra i s used
i f { $newapi == ”ON” } {

$agent t a r g e t $imep (0)
second t r a c e r to s e e the ac tua l
types o f to ra packets be fo r e imep packs them
i f { [i n f o e x i s t s toraDebug] && $toraDebug == ”ON”} {

s e t sndT2 [$ s e l f mobi l i ty− trace Send ”TRP”]
$sndT2 ta r g e t $imep (0)
$agent t a r g e t $sndT2

}
$imep (0) s endta rg e t [$ s e l f s e t l l (0)]

25

Chapter 3. Changes on Tcl Code

} e l s e { ;# no IMEP
i f {$numIfsSimulator != ””} {

for {set i 0} {$i < [$ se l f set n i f s] } { incr i} {
$agent target $i [$se l f set l l ($i)]

}
} else {

$agent target [$se l f set l l (0)]
}

}
#
Recv Target
#
i f {$newapi == ”ON” } {

[$ s e l f s e t l l (0)] up−target $imep (0)
$ c l a s s i f i e r d e f a u l t t a r g e t $agent
need a second t r a c e r to s e e the ac tua l
types o f to ra packets a f t e r imep unpacks them
no need to support any h i e r node
i f { [i n f o e x i s t s toraDebug] && $toraDebug == ”ON” } {

s e t rcvT2 [$ s e l f mobi l i ty− trace Recv ”TRP”]
$rcvT2 ta r g e t $agent
[$ s e l f s e t c l a s s i f i e r] d e f a u l t t a r g e t $rcvT2

}
} e l s e {

$ c l a s s i f i e r d e f a u l t t a r g e t $agent
$dmux i n s t a l l $port $agent

}
}

}

The last procedure that needs to be modified is the add-interface; originally we did
not touch this one, since the multi-interface support was brought about by the for loop that
was added into the create-wireless-node procedure. However, if no changes were made,
the model that has been presented on Figure 2.2 would not have been completely accurate,
since the original add-interface method would have just created one ARP table per node,
instead of one ARP table per interface. Although it could be argued that having one ARP
per node would have been closer to a realistic case, we noticed that this could lead to a wrong
behavior. E.g. if a node has already used one interface to communicate with another one, it
will not be possible trying to use another interface, as the request to the ARP entity would be
answered with previous entry, which would not be longer valid. Hence, functionality-wise it is
more appropriate having one ARP table per interface. To achieve this, as already mentioned,
we needed to make some changes on the add-interface procedure, as shown on Listing 3.9.

Listing 3.9: (ns-mobilenode.tcl) Changes on add-interface procedure

Node/MobileNode i n s tp r o c add− inter face { channel pmodel l l t y p e
mactype qtype q len i f t y p e anttype topo i n e r r p r o c oute r rp roc
f e cp r o c} {

$ s e l f i n s t v a r a r p tab l e n i f s n e t i f mac i f q l l imep i n e r r
ou t e r r f e c

26

Chapter 3. Changes on Tcl Code

s e t ns [Simulator in s tance]
s e t imepf lag [$ns imep−support]
s e t t $ n i f s
i n c r n i f s

s e t n e t i f ($t) [new $ i f t yp e] ;# i n t e r f a c e
s e t mac ($t) [new $mactype] ;# mac l a y e r
s e t i f q ($t) [new $qtype] ;# i n t e r f a c e queue
s e t l l ($t) [new $ l l t y p e] ;# l i n k l a y e r

s e t ant ($t) [new $anttype]

$ns mac−type $mactype
s e t i n e r r ($t) ””
i f { $ i n e r r p r o c != ””} {

s e t i n e r r ($t) [$ i n e r r p r o c]
}
s e t ou t e r r ($t) ””
i f { $oute r rpro c != ””} {

s e t ou t e r r ($t) [$ oute r rp ro c]
}
s e t f e c ($t) ””
i f { $ f e cpro c != ””} {

s e t f e c ($t) [$ f e cpro c]
}

s e t namfp [$ns get−nam−traceall]
i f { $ imepf lag == ”ON” } {
IMEP lay e r
s e t imep ($t) [new Agent/IMEP [$ s e l f id]]
s e t imep $imep ($t)
s e t drpT [$ s e l f mobi l i ty− trace Drop ”RTR”]
i f { $namfp != ”” } {

$drpT namattach $namfp
}
$imep drop−target $drpT
$ns at 0 . [$ s e l f id] ”$imep ($t) s t a r t ” ;# s t a r t beacon

timer
}

#
Local Var i ab l e s
#
s e t nul lAgent [$ns s e t nul lAgent]
s e t n e t i f $ n e t i f ($t)
s e t mac $mac ($t)
s e t i f q $ i f q ($t)
s e t l l $ l l ($t)

s e t i n e r r $ i n e r r ($t)
s e t oute r r $ ou t e r r ($t)
s e t f e c $ f e c ($t)

We also create one ARP table per interface

27

Chapter 3. Changes on Tcl Code

set arptable ($t) [new ARPTable $se l f $mac]
set arptable $arptable ($t)

i f { $ imepf lag != ””} {
s e t drpT [$ s e l f mobi l i ty− trace Drop ”IFQ”]

} e l s e {
s e t drpT [cmu−trace Drop ”IFQ” $ s e l f]

}
$arptable drop−target $drpT
i f { $namfp != ”” } {

$drpT namattach $namfp
}

#
Link Layer
#
$ l l arptable $arptable
$ l l mac $mac
$ l l down−target $ i f q

i f { $ imepf lag == ”ON” } {
$imep r e cv t a r g e t [$ s e l f entry]
$imep sendta rg e t $ l l
$ l l up−target $imep
} e l s e {
$ l l up−target [$ s e l f entry]

}
#
In t e r f a c e Queue
#
$ i f q t a r g e t $mac
$ i f q s e t l i m i t $q len
i f { $ imepf lag != ””} {

s e t drpT [$ s e l f mobi l i ty− trace Drop ”IFQ”]
} e l s e {

s e t drpT [cmu−trace Drop ”IFQ” $ s e l f]
}

$ i f q drop−target $drpT
i f { $namfp != ”” } {

$drpT namattach $namfp
}
#
Mac Layer
#
$mac n e t i f $ n e t i f
$mac up−target $ l l

i f { $oute r r == ”” && $ f e c == ””} {
$mac down−target $ n e t i f

} e l s e i f { $oute r r != ”” && $ f e c == ””} {
$mac down−target $oute r r
$oute r r t a r g e t $ n e t i f

} e l s e i f { $oute r r == ”” && $ f e c != ””} {

28

Chapter 3. Changes on Tcl Code

$mac down−target $ f e c
$ f e c down−target $ n e t i f

} e l s e {
$mac down−target $ f e c
$ f e c down−target $oute r r
$ e r r t a r g e t $ n e t i f

}

s e t god [God ins tance]
i f {$mactype == ”Mac/802 11 ”} {
$mac nodes [$god num nodes]

}
#
Network I n t e r f a c e
#
#i f { $ f e c == ””} {

$ne t i f up−target $mac
#} e l s e {

$ne t i f up−target $ f e c
$ f e c up−target $mac
#}

$ n e t i f channel $channel
i f { $ i n e r r == ”” && $ f e c == ””} {

$ n e t i f up−target $mac
} e l s e i f { $ i n e r r != ”” && $ f e c == ””} {

$ n e t i f up−target $ i n e r r
$ i n e r r t a r g e t $mac

} e l s e i f { $e r r == ”” && $ f e c != ””} {
$ n e t i f up−target $ f e c
$ f e c up−target $mac

} e l s e {
$ n e t i f up−target $ i n e r r
$ i n e r r t a r g e t $ f e c
$ f e c up−target $mac

}

$ n e t i f propagat ion $pmodel ;# Propagation Model
$ n e t i f node $ s e l f ;# Bind node <−−−> i n t e r f a c e
$ n e t i f antenna $ant ($t)
#
Phys i ca l Channel
#
$channel add i f $ n e t i f

List−based improvement
For nodes t a l k i ng to mul t ip l e channe l s t h i s should
be c a l l e d mul t ip l e t imes f o r each channel
$channel add−node $ s e l f

l e t topo keep handle o f channel
$topo channel $channel
==

29

Chapter 3. Changes on Tcl Code

i f { [S imulator s e t MacTrace] == ”ON” } {
#
Trace RTS/CTS/ACK Packets
#
i f { $ imepf lag != ””} {

s e t rcvT [$ s e l f mobi l i ty− trace Recv ”MAC”]
} e l s e {

s e t rcvT [cmu−trace Recv ”MAC” $ s e l f]
}
$mac log− ta rget $rcvT
i f { $namfp != ”” } {

$rcvT namattach $namfp
}
#
Trace Sent Packets
#
i f { $ imepf lag != ””} {

s e t sndT [$ s e l f mobi l i ty− trace Send ”MAC”]
} e l s e {

s e t sndT [cmu−trace Send ”MAC” $ s e l f]
}
$sndT ta r g e t [$mac down−target]
$mac down−target $sndT
i f { $namfp != ”” } {

$sndT namattach $namfp
}
#
Trace Received Packets
#
i f { $ imepf lag != ””} {

s e t rcvT [$ s e l f mobi l i ty− trace Recv ”MAC”]
} e l s e {

s e t rcvT [cmu−trace Recv ”MAC” $ s e l f]
}
$rcvT ta r g e t [$mac up−target]
$mac up−target $rcvT
i f { $namfp != ”” } {

$rcvT namattach $namfp
}
#
Trace Dropped Packets
#
i f { $ imepf lag != ””} {

s e t drpT [$ s e l f mobi l i ty− trace Drop ”MAC”]
} e l s e {

s e t drpT [cmu−trace Drop ”MAC” $ s e l f]
}
$mac drop−target $drpT
i f { $namfp != ”” } {

$drpT namattach $namfp
}

} e l s e {

30

Chapter 3. Changes on Tcl Code

$mac log− ta rget [$ns s e t nul lAgent]
$mac drop−target [$ns s e t nul lAgent]

}

change wrt Mike ’ s code
i f { [S imulator s e t EotTrace] == ”ON” } {

#
Also t r a ce end o f t r ansmi s s i on time f o r packets
#

i f { $ imepf lag != ””} {
s e t eotT [$ s e l f mobi l i ty− trace EOT ”MAC”]

} e l s e {
s e t eoT [cmu−trace EOT ”MAC” $ s e l f]

}
$mac eot− ta rget $eotT

}

==

$ s e l f add i f $ n e t i f
}

This latter change affects the way the MobileNode is created (see Listing 3.10) and reset
(see Listing 3.11).

Listing 3.10: (ns-mobilenode.tcl) MobileNode init procedure

Node/MobileNode i n s tp r o c i n i t a rgs {
I don ’ t care about addres s c l a s s i f i e r ; i t ’ s not my bus ine s s
Al l I do i s to setup port c l a s s i f i e r so we can do broadca s t ,
and to s e t up i n t e r f a c e s t u f f .
$ s e l f attach−node $node
$node por t−not i fy $ s e l f

eva l $ s e l f next $args

$ s e l f i n s t v a r n i f s a r p t ab l e X Y Z nodetype
s e t X 0 . 0
s e t Y 0 . 0
s e t Z 0 . 0
set arptable ”” ;# no ARP table yet
s e t n i f s 0 ;# number o f network i n t e r f a c e s
Mobile IP node p r o c e s s i n g

$ s e l f makemip−New$nodetype
}

31

Chapter 3. Changes on Tcl Code

Listing 3.11: (ns-mobilenode.tcl) MobileNode reset procedure

Node/MobileNode i n s tp r o c r e s e t {} {
$ s e l f i n s t v a r a r p tab l e n i f s n e t i f mac i f q l l imep

f o r { s e t i 0} { $ i < $ n i f s } { i n c r i } {
$ n e t i f ($ i) r e s e t
$mac ($ i) r e s e t
$ l l ($ i) r e s e t
$ i f q ($ i) r e s e t
i f { [i n f o e x i s t s opt (imep)] && $opt (imep) == ”ON” } {

$imep ($ i) r e s e t
}
i f { $arptable ($i) != ”” } {

$arptable ($i) reset
}

}
}

32

Chapter 4

Changes on C++ Code

4.1 Introduction

As we have already said, most of the changes have been done within the Tcl implementation
of the simulator. However, some modifications need to be done, also within the C++ files,
basically to be able to adapt to the new framework. Most of the changes affect how the
simulator deals with the MobileNode class and are discussed in the remaining of this section.

4.2 Changes on mobilenode.[cc,h]

After creating the multiple interface structures for mobile nodes on Tcl, it is necessary to
correctly associate them to the appropriate channel. The simulator controls the nodes which
are connected to a channel by means of a list which is managed using two pointers (one to
the previous and another one to the next node on the list). These pointers were originally
simple variables; however, if we wish to manage several channels, it is required to create two
arrays of pointers with as many elements as channels exist within the simulation scenario. In
this sense, it becomes easy managing the nodes of one particular channel, i.e. referring to it
using the channel number as the array index, thus being able to move to either the previous
or the next element of the list. These modifications are made in the mobilenode.h file as
shown in Listing 4.1; obviously the MAX CHANNELS variable needs to be defined before.

Listing 4.1: (mobilenode.h) New declaration of MobileNode lists within MobileNode class

. . .
/∗ For l i s t −keeper ∗/
MobileNode∗ nextX [MAX CHANNELS] ;
MobileNode∗ prevX [MAX CHANNELS] ;
. . .

After performing all the changes needed to adapt to the new definitions of the nextX and
prevX variables (see next Section) we detected quite a weird behavior on the simulator. The
call to the original getLoc method, which was declared as inline within the MobileNode class
did not work properly, as it always returned a zero distance, thus leading to wrong packet
receptions, no matter the real distance between nodes. In order to solve this problem, we
changed the method declaration, so that it was not inline anymore, as shown in Listing 4.2.

33

Chapter 4. Changes on C++ Code

Listing 4.2: (mobilenode.h) New getLoc method declaration within MobileNode class

. . .
vo id s t a r t (vo id) ;
void getLoc(double ∗x , double ∗y , double ∗z) ;
i n l i n e void getVelo (double ∗dx , double ∗dy , double ∗dz) {

∗dx = dX ∗ speed ; ∗dy = dY ∗ speed ; ∗dz = 0 . 0 ;
}
. . .

In addition, we added the method definition within the mobilenode.cc file (see List-
ing 4.3).

Listing 4.3: (mobilenode.cc) getLoc method definition

void
MobileNode : : getLoc (double ∗x , double ∗y , double ∗z)
{

upda te po s i t i on () ;
∗x = X ;
∗y = Y ;
∗ z = Z ;

}

4.3 Changes on channel.cc

The two arrays mentioned above are used within the channel.cc file so as to manage the
corresponding node lists (e.g. attaching a new node to a channel, removing, updating, etc).
In order to refer to the appropriate list, the index of the corresponding channel has to be
used, as shown in Listing 4.4, where this->index() refers to the correct one. Note that this
has to be changed throughout the whole channel.cc file.

Listing 4.4: (channel.cc) Accessing the appropriate MobileNode list

nextX [th i s−>index ()]
prevX [th i s−>index ()]

Furthermore, when a packet is sent, a previous evaluation procedure is performed so as
to ensure that it is sent to the correct destination. The first step is to assess which nodes are
close enough to the source and are also connected to the channel that will be used for this
communication (this last condition is automatically checked because the right list of nodes
for this channel had been previously selected, thanks to the management changes explained
before). Then, the packet could be sent to all of the interfaces in the destination node.
However, this makes little sense, since the packet should only be received from the interface
connected to the appropriate channel. In this sense, we had to add a new condition so as to
check which of the interfaces of the destination node is connected to the same channel that
will be used to transmit the packet. The code already modified in channel.cc is shown in
Listing 4.5.

34

Chapter 4. Changes on C++ Code

Listing 4.5: (channel.cc) affectedNodes method from the channel class

a f fec tedNodes = getAf fectedNodes (mtnode , distCST + /∗ s a f e t y ∗/ 5 ,
&numAffectedNodes) ;

f o r (i =0; i < numAffectedNodes ; i++) {
rnode = af fectedNodes [i] ;
i f (rnode == tnode)

cont inue ;
newp = p−>copy () ;
propdelay = get pde lay (tnode , rnode) ;
r i f p = (rnode−>i f h ead ()) . l h f i r s t ;
f o r (; r i f p ; r i f p = r i f p−>nextnode ()) {

i f (ri fp−>channel () == this) {
s . s chedule (r i f p , newp , propdelay) ;

}
}

}
de l e t e [] a f fec tedNodes ;

4.4 Changes on mac-802 11.cc

The last change in the C++ code is needed so as to be able to identify the interface which
a message was received through. This is mandatory for the correct handling of multiple
interfaces by the routing agents, as will be explained in Chapter 5. The code which is shown
in Listing 4.6 needs to be added to the mac-802 11.cc file.

Listing 4.6: (mac-802 11.cc) Registering the correct MAC receiving interface within the
recv method of the Mac802 11 class

. . .
i f (t x a c t i v e && hdr−>e r r o r () == 0) {

hdr−>e r r o r () = 1 ;
}
hdr−>i face () = addr() ;
i f (r x s t a t e == MAC IDLE) {
. . .

35

Chapter 5

Changes on Routing Protocol Code

5.1 Introduction

It goes without saying that the final goal of implementing the multi-interface model is to
make use of it. Hence, external agents from the simulator architecture must be changed so
as to use this new feature. In this section we show how a routing agent needs to be adapted
in order to use the multiple interface structure previously discussed, so that it is possible to
assess the benefits of the modified model.

These changes have been tested on a proprietary implementation of an ad-hoc routing
protocol, which follows the same approach as the original AODV implementation from the
simulator does. Nonetheless, they are generic enough, so it should not be too complicated
extending them to other agents.

In order to fully understand the discussions of this chapter, a good knowledge of how
routing protocols are implemented within the simulator is required. The reader may refer
to [6] for a good overview on this issue.

5.2 Changes on routing agent implementation

Since we want the number of interfaces per node to be flexible, and furthermore, we want
to maintain the legacy behavior of the simulator, it is required that the routing agent keeps
track of the number of interfaces it is managing. A new member of the routing agent class,
nIfaces, is declared so as to keep this information. In our approach, the interfaces will be
defined stepwise from the scenario script (see Chapter 6), so at the beginning its value is set
to 0 (i.e. in the constructor of the agent).

As can be seen on Figure 2.2, it is the routing agent that needs to decide upon the outgoing
interface it needs to pass the packet to. Instead of using the traditional single ifqueue and
target that any routing agent may use, we declare two arrays, targetlist and ifqueuelist.
The first one stores the LL modules for all the interfaces a particular node has, whilst the
second one keeps their corresponding queues. Listing 5.1 shows the lines that are required to
be added within the header file of the routing agent (within the class declaration). MAX IF

needs to be declared beforehand.

Listing 5.1: (routingAgent.h) New class members to manage multiple interfaces

i n t n I f a c e s ;

36

Chapter 5. Changes on Routing Protocol Code

NsObject ∗ t a r g e t l i s t [MAX IF] ;
PriQueue ∗ i f q u e u e l i s t [MAX IF] ;

The next step would be to modify the command method of the routing agent class, so as
to initialize the values of the aforementioned variables from the Tcl script and to make use
of them. Listing 5.2 shows how the aforementioned arrays, ifqueuelist and targetlist

get populated, taking the corresponding values while the interfaces are being created in the
nodes. At the same time we increase the value of the variable that maintains the number of
interfaces used by the node, for each of the interfaces which are added.

Listing 5.2: (routingAgent.cc) Changes on command method of the routing agent class

e l s e i f (argc == 4) {
i f (strcmp (argv [1] , ” i f −queue”) == 0) {

PriQueue ∗ i f q = (PriQueue ∗) TclObject : : lookup (argv [3]) ;
i n t temp = a to i (argv [2]) ;
i f (temp == nI f a c e s) {

n I f a c e s ++;
}
i f q u e u e l i s t [temp] = i f q ;
i f (i f q u e u e l i s t [temp]) {

r e turn TCL OK;
} e l s e {

r e turn TCL ERROR;
}

}
i f (strcmp (argv [1] , ” t a r g e t ”) == 0) {

i n t temp = a to i (argv [2]) ;
i f (temp == nI f a c e s) {

n I f a c e s ++;
}
t a r g e t l i s t [temp] = (NsObject ∗) TclObject : : lookup (argv [3])

;
i f (t a r g e t l i s t [temp]) {

r e turn TCL OK;
} e l s e {

r e turn TCL ERROR;
}

}
}

With all the previous changes it is indeed possible to create multi-interface nodes. The
next thing is to add the required intelligence within the routing agent implementation, so
that it can decide the interface which needs to transmit each packet. On the other hand, it is
also well known that the use of broadcast transmissions is quite relevant in routing protocols
for ad hoc networks (e.g. during the Route Discovery process); when there is more than one
available interface, a broadcast packet (typically a Route Request) needs to be transmitted
through all the interfaces a node has. Listing 5.3 shows how this can be accomplished. We
use a loop to send the packet through all the interfaces, adding some random time to avoid
collisions. Note that for each of the interfaces a copy of the original packet is sent, since
their route through the simulator entities will be different onwards. In addition, to preserve

37

Chapter 5. Changes on Routing Protocol Code

the traditional behavior of the simulator, the new code is only executed if the multi-interface
extension has been initialized from the scenario script, i.e. nIfaces 6= 0. If such is not the
case, the routing agent performs the broadcast transmission as it would have done without
the extension.

Listing 5.3: (routingAgent.cc) Sending a broadcast packet

i f (n I f a c e s) {
f o r (i n t i = 0 ; i < n I f a c e s ; i++){

Packet ∗p copy = pkt−>copy () ;
Scheduler : : i n s tance () . s chedule (t a r g e t l i s t [i] , p copy , JITTER)

;
}
Packet : : f r e e (pkt)

e l s e {
Scheduler : : i n s tance () . s chedule (ta r g e t , pkt , JITTER) ;

}

On the other hand, for unicast transmissions, an index Iface (see Listing 5.4) is used so
as to select the appropriate target (i.e. the LL entity of the interface the packet needs to be
sent to). This value must be carefully selected and it needs to be kept at the routing table,
together with the rest of information that needs to be therein (see Section 5.3). In this sense,
the method used to create a new routing table entry needs to be updated so as to indicate
the output interface that has to be used to reach the destination. It obviously belongs to
the range of interfaces that are used by the particular node (Iface ∈ [0, nIfaces− 1]). Note
that, as was done for the broadcast case, we apply the multi-interface extension only when
the user had previously initialized such extension.

Listing 5.4: (routingAgent.cc) Sending a unicast packet

i f (n I f a c e s) {
Scheduler : : i n s tance () . s chedule (t a r g e t l i s t [I f a c e] , pkt , 0) ;

} e l s e {
Scheduler : : i n s tance () . s chedule (ta r g e t , pkt , 0) ;

}

The challenge is to be able to associate the interface with the Iface index, e.g. when a new
entry has to be introduced within the route table. In order to accomplish this, Listing 5.5
shows the code that needs to be used. cmn->iface() stores the address of the incoming
interface, as discussed in Section 4.4; on the other hand the second term is the address of the
first interface of the node. Taking advantage from the fact that the interfaces are gradually
added (see Chapter 6), this simple expression allows us to easily refer to the appropriate
interface. If the multi-interface extension is not being used, we assign the index a non-valid
value.

Listing 5.5: (routingAgent.cc) Getting the interface index

i f (n I f a c e s) {
I f a c e = cmnh−>i f a c e () −((Mac ∗) i f q u e u e l i s t [0]−> t a r g e t ())−>addr ()

;
} e l s e {

38

Chapter 5. Changes on Routing Protocol Code

I f a c e = −1;
}

5.3 Changes on the Route Table

We have just seen how the routing agent is able to ascertain the interface from which any
packet had been received. This information must be stored in the route table entry for the
corresponding destination so that it can be used on future transmissions; that is to say, in
order to route a packet to a destination it is not enough to know the next hop, but the routing
agent must be aware of which output interface it needs to use so as to reach it. Hence, a new
variable interface must be added to the route entry definition.

This variable stores the index for the corresponding interface, so as to be able to refer to
the appropriate array member, as has been previously explained. Using the corresponding
method the entry is created or updated, including this information for multi-interface support
in the route table.

5.4 Illustrative example: AODV

One of the most used routing protocols within the Network Simulator framework is AODV.
The main reason for this is that it is included, by default, in the different ns-2 distributions.
It is sensible, thus, to compile all the changes which are needed in such routing protocol,
following the guidelines provided before in this section.

5.4.1 Changes in aodv.h

Following Listing 5.1, there are two changes which are needed in the AODV class declaration.
First, we need to define a new constant MAX IF, as shown in Listing 5.6, since it is used

afterwards (see Listing 5.7) to declare the arrays which handle the list of targets and interface
queues.

Listing 5.6: (aodv.h) Declaring the MAX IF constant

// We de c l a r e the maximum number o f i n t e r f a c e s
#de f i n e MAX IF 11

Once we have defined the new constant we need to add the new members at the end of
the AODV class declaration, as shown in Listing 5.7.

Listing 5.7: (aodv.h) New members of the AODV class

. . .
/∗
∗ A po inte r to the network i n t e r f a c e queue that s i t s
∗ between the ” c l a s s i f i e r ” and the ” l i n k l a y e r ” .
∗/

PriQueue ∗ i f queue ;

/∗

39

Chapter 5. Changes on Routing Protocol Code

∗ Logging s t u f f
∗/

void l o g l i n k d e l (nsaddr t dst) ;
vo id l o g l i n k b r o k e (Packet ∗p) ;
vo id l o g l i n k k e p t (nsaddr t dst) ;

/∗ f o r pa s s ing packets up to agents ∗/
P o r tC l a s s i f i e r ∗dmux ;

// New members required for the multi−interface extension
int nIfaces ;
NsObject ∗ target l i s t [MAX IF] ;
PriQueue ∗ i fqueuel i st [MAX IF] ;

} ;

Another change which needs to be applied in this file deals with how the routing table
needs to be handled. As was explained before, each routing table entry must also incorporate
an index so that the routing agent is able to identify the interface through which the packet
needs to be forwarded; in this case, we need to change the way the rt update is called, as
shown in Listing 5.8.

Listing 5.8: (aodv.h) New members of the AODV class

. . .
/∗
∗ Route Table Management
∗/

void r t r e s o l v e (Packet ∗p) ;
vo id r t update (aodv r t ent ry ∗ rt , u i n t 3 2 t

seqnum ,
u i n t 1 6 t metr ic , nsaddr t nexthop ,
double exp i r e t ime , u int8 t

interface) ;
vo id rt down (aodv r t ent ry ∗ r t) ;
vo id l o c a l r t r e p a i r (aodv r t ent ry ∗ rt , Packet ∗

p) ;
pub l i c :

vo id r t l l f a i l e d (Packet ∗p) ;
vo id h a n d l e l i n k f a i l u r e (nsaddr t id) ;

p ro te c t ed :
vo id r t purg e (void) ;

vo id enque (aodv r t ent ry ∗ rt , Packet ∗p) ;
Packet∗ deque (aodv r t ent ry ∗ r t) ;

. . .

5.4.2 Changes in aodv.cc

In this case we need to apply those changes which are depicted in Listings 5.2, 5.3, 5.4, 5.5.
Some of them need to be applied in more than one AODV method, while there are other

40

Chapter 5. Changes on Routing Protocol Code

additional places in which the interface with the routing table needs to be adjusted accord-
ingly. It is also convenient to ensure that the number of interfaces per node is initialized in
the constructor, so as to maintain the legacy behavior of the AODV protocol. This can be
seen in Listing 5.9.

Listing 5.9: (aodv.cc) Changes on the AODV constructor

AODV: :AODV(nsaddr t id) : Agent (PT AODV) ,
btimer (t h i s) , htimer (t h i s) , ntimer (t h i s) ,
r t imer (t h i s) , l r t ime r (t h i s) , rqueue () {

index = id ;
seqno = 2 ;
bid = 1 ;

LIST INIT(&nbhead) ;
LIST INIT(&bihead) ;

l o g t a r g e t = 0 ;
i fqueue = 0 ;
nIfaces = 0;

}

Before describing the changes which are required on those methods which deal with the
transmission and reception of packets, the command method needs to be modified, in order to
adapt it to the new architecture, as it was previously discussed in Listing 5.2. As can be seen
in Listing 5.10, the modifications are very much the same for the case of the AODV agent.

Listing 5.10: (aodv.cc) Changes on the command method

i n t
AODV: : command(i n t argc , const char ∗ const ∗ argv) {

i f (argc == 2) {
Tcl& t c l = Tcl : : i n s tance () ;

i f (strncasecmp (argv [1] , ” id ” , 2) == 0) {
t c l . r e s u l t f (”%d” , index) ;
r e turn TCL OK;

}

i f (strncasecmp (argv [1] , ” s t a r t ” , 2) == 0) {
btimer . handle ((Event∗) 0) ;

#i f n d e f AODV LINK LAYER DETECTION
htimer . handle ((Event∗) 0) ;
ntimer . handle ((Event∗) 0) ;

#end i f // LINK LAYER DETECTION

rt imer . handle ((Event∗) 0) ;
r e turn TCL OK;

}
}

41

Chapter 5. Changes on Routing Protocol Code

e l s e i f (argc == 3) {
i f (strcmp (argv [1] , ” index ”) == 0) {

index = a to i (argv [2]) ;
r e turn TCL OK;

}

e l s e i f (strcmp (argv [1] , ” log−t a r g e t ”) == 0 | | strcmp (argv [1] , ”
t r a c e t a r g e t”) == 0) {

l o g t a r g e t = (Trace ∗) TclObject : : lookup (argv [2]) ;
i f (l o g t a r g e t == 0)

return TCL ERROR;
return TCL OK;

}
e l s e i f (strcmp (argv [1] , ”drop−t a r g e t ”) == 0) {
i n t s t a t = rqueue . command(argc , argv) ;

i f (s t a t != TCL OK) return s t a t ;
r e turn Agent : : command(argc , argv) ;

}
e l s e i f (strcmp (argv [1] , ” i f −queue”) == 0) {
i f queue = (PriQueue ∗) TclObject : : lookup (argv [2]) ;

i f (i f queue == 0)
return TCL ERROR;

return TCL OK;
}
e l s e i f (strcmp (argv [1] , ”port−dmux”) == 0) {

dmux = (P o r tC l a s s i f i e r ∗) TclObject : : lookup (argv [2]) ;
i f (dmux == 0) {

f p r i n t f (s tde r r , ”%s : %s lookup o f %s f a i l e d \n” ,
FILE ,

argv [1] , argv [2]) ;
r e turn TCL ERROR;

}
r e turn TCL OK;

}
}
else i f (argc == 4) {

i f (strcmp(argv [1] ,” i f−queue”)==0) {
PriQueue ∗ i fq = (PriQueue ∗) TclObject : : lookup(argv [3]) ;
int temp = atoi (argv [2]) ;
i f (temp == nIfaces) {

nIfaces++;
}
i fqueuel i st [temp] = i fq ;
i f (i fqueuel i st [temp]) {

return TCLOK;
} else {

return TCLERROR;
}

}
i f (strcmp(argv [1] ,” target”) == 0) {

int temp = atoi (argv [2]) ;
i f (temp == nIfaces) {

42

Chapter 5. Changes on Routing Protocol Code

nIfaces++;
}
target l i s t [temp] = (NsObject ∗) TclObject : : lookup(argv [3])

;
i f (target l i s t [temp]) {

return TCLOK;
} else {

return TCLERROR;
}

}
}
r e turn Agent : : command(argc , argv) ;

}

Listing 5.3 has to be used whenever the AODV needs to send a broadcast packet, which
happens, as far as we can tell, in the following methods of the aodv.cc file: sendRequest,
sendError and sendHello. The corresponding changes are highlighted in the following list-
ings.

Listing 5.11: (aodv.cc) Changes on the sendRequest method

void
AODV: : sendRequest (nsaddr t dst) {
// Al l o ca te a RREQ packet
Packet ∗p = Packet : : a l l o c () ;
s t r u c t hdr cmn ∗ch = HDRCMN(p) ;
s t r u c t hdr ip ∗ ih = HDR IP(p) ;
s t r u c t hdr aodv request ∗ rq = HDR AODV REQUEST(p) ;
aodv r t ent ry ∗ r t = r t ab l e . r t l o okup (dst) ;

a s s e r t (r t) ;

/∗
∗ Rate l im i t sending o f Route Requests . We are very c on s e r v a t i v e
∗ about sending out route r e que s t s .
∗/

i f (rt−>r t f l a g s == RTF UP) {
a s s e r t (rt−>r t hops != INFINITY2) ;
Packet : : f r e e ((Packet ∗)p) ;
r e turn ;

}

i f (r t−>r t r e q t imeou t > CURRENT TIME) {
Packet : : f r e e ((Packet ∗)p) ;
r e turn ;

}

// r t r e q c n t i s the no . o f t imes we did network−wide broadcast
// RREQ RETRIES i s the maximum number we w i l l a l low be fo r e
// going to a long timeout .

43

Chapter 5. Changes on Routing Protocol Code

i f (r t−>r t r e q c n t > RREQ RETRIES) {
rt−>r t r e q t imeou t = CURRENT TIME + MAX RREQ TIMEOUT;
rt−>r t r e q c n t = 0 ;

Packet ∗buf pkt ;
whi l e ((buf pkt = rqueue . deque (rt−>r t d s t))) {

drop (buf pkt , DROP RTR NO ROUTE) ;
}
Packet : : f r e e ((Packet ∗)p) ;
r e turn ;

}

#i f d e f DEBUG
f p r i n t f (s tde r r , ”(%2d) − %2d sending Route Request , ds t : %d\n” ,

++route r eque s t , index , rt−>r t d s t) ;
#end i f // DEBUG

// Determine the TTL to be used t h i s time .
// Dynamic TTL eva lua t i on − SRD

rt−>r t r e q l a s t t t l = max(rt−>r t r e q l a s t t t l , r t−>

r t l a s t h o p c o un t) ;

i f (0 == rt−>r t r e q l a s t t t l) {
// f i r s t time query broadcast

ih−>t t l = TTL START;
}
e l s e {
// Expanding r ing search .

i f (rt−>r t r e q l a s t t t l < TTL THRESHOLD)
ih−>t t l = rt−>r t r e q l a s t t t l + TTL INCREMENT;

e l s e {
// network−wide broadcast

ih−>t t l = NETWORKDIAMETER;
rt−>r t r e q c n t += 1 ;

}
}

// remember the TTL used f o r the next time
rt−>r t r e q l a s t t t l = ih−>t t l ;

// PerHopTime i s the roundtr ip time per hop f o r route r e que s t s .
// The f a c t o r 2 . 0 i s j u s t to be s a f e . . SRD 5/22/99
// Also note that we are making timeouts to be l a r g e r i f we have
// done network wide broadcast be fo r e .

rt−>r t r e q t imeou t = 2 .0 ∗ (double) ih−>t t l ∗ PerHopTime(r t) ;
i f (r t−>r t r e q c n t > 0)

rt−>r t r e q t imeou t ∗= rt−>r t r e q c n t ;
rt−>r t r e q t imeou t += CURRENT TIME;

// Don ’ t l e t the timeout to be too la r g e , however . . SRD 6/8/99
i f (rt−>r t r e q t imeou t > CURRENT TIME + MAX RREQ TIMEOUT)

rt−>r t r e q t imeou t = CURRENT TIME + MAX RREQ TIMEOUT;

44

Chapter 5. Changes on Routing Protocol Code

rt−>r t e x p i r e = 0 ;

#i f d e f DEBUG
f p r i n t f (s tde r r , ”(%2d) − %2d sending Route Request , ds t : %d , tout

%f ms\n” ,
++route r eque s t ,
index , rt−>r t d s t ,
r t−>r t r e q t imeou t − CURRENT TIME) ;

#end i f // DEBUG

// F i l l out the id packet
// ch−>uid () = 0 ;
ch−>ptype () = PT AODV;
ch−>s i z e () = IP HDR LEN + rq−>s i z e () ;
ch−>i f a c e () = −2;
ch−>e r r o r () = 0 ;
ch−>addr type () = NS AF NONE;
ch−>prev hop = index ; // AODV hack

ih−>saddr () = index ;
ih−>daddr () = IP BROADCAST;
ih−>spo r t () = RT PORT;
ih−>dport () = RT PORT;

// F i l l up some more f i e l d s .
rq−>rq type = AODVTYPE RREQ;
rq−>rq hop count = 1 ;
rq−>r q b c a s t i d = bid++;
rq−>r q d s t = dst ;
rq−>r q ds t s eqno = (r t ? rt−>r t s eqno : 0) ;
rq−>r q s r c = index ;
seqno += 2 ;
a s s e r t ((seqno%2) == 0) ;
rq−>r q s r c s e qno = seqno ;
rq−>rq timestamp = CURRENT TIME;

i f (nIfaces) {
for (int i=0; i<nIfaces ; i++) {

Packet ∗p copy = p−>copy() ;
Scheduler : : instance() . schedule(target l i s t [i] , p copy , 0.0) ;

}
Packet : : free (p) ;

}
else {

Scheduler : : instance() . schedule(target , p, 0.0) ;
}

}

Listing 5.12: (aodv.cc) Changes on the sendError method

void

45

Chapter 5. Changes on Routing Protocol Code

AODV: : sendError (Packet ∗p , bool j i t t e r) {
s t r u c t hdr cmn ∗ch = HDRCMN(p) ;
s t r u c t hdr ip ∗ ih = HDR IP(p) ;
s t r u c t hdr aodv e r r o r ∗ r e = HDR AODV ERROR(p) ;

#i f d e f ERROR
f p r i n t f (s tde r r , ” sending Error from %d at %.2 f \n” , index , Scheduler

: : i n s tance () . c l o ck ()) ;
#end i f // DEBUG

re−>r e type = AODVTYPE RERR;
// re−>r e s e rved [0] = 0x00 ; re−>r e s e rved [1] = 0x00 ;
// DestCount and l i s t o f unreachable d e s t i n a t i o n s are a l r eady

f i l l e d

// ch−>uid () = 0 ;
ch−>ptype () = PT AODV;
ch−>s i z e () = IP HDR LEN + re−>s i z e () ;
ch−>i f a c e () = −2;
ch−>e r r o r () = 0 ;
ch−>addr type () = NS AF NONE;
ch−>next hop = 0 ;
ch−>prev hop = index ; // AODV hack
ch−>d i r e c t i o n () = hdr cmn : :DOWN; // important : change the

packet ’ s d i r e c t i o n

ih−>saddr () = index ;
ih−>daddr () = IP BROADCAST;
ih−>spo r t () = RT PORT;
ih−>dport () = RT PORT;
ih−>t t l = 1 ;

i f (j i t t e r) {
i f (nIfaces) {

for (int i=0; i<nIfaces ; i++) {
Packet ∗p copy = p−>copy() ;
Scheduler : : instance() . schedule(target l i s t [i] ,

p copy , 0.01∗Random: : uniform()) ;
}

Packet : : free (p) ;
}
else {

Scheduler : : instance () . schedule(target , p, 0.01∗Random
: : uniform()) ;

}
}
else {

i f (nIfaces) {
for (int i=0; i<nIfaces ; i++) {

Packet ∗p copy = p−>copy() ;
Scheduler : : instance() . schedule(target l i s t [i] ,

p copy , 0.0) ;
}

46

Chapter 5. Changes on Routing Protocol Code

Packet : : free (p) ;
}
else {

Scheduler : : instance () . schedule(target , p, 0.0) ;
}

}

}

Listing 5.13: (aodv.cc) Changes on the sendHello method

void
AODV: : sendHel lo () {
Packet ∗p = Packet : : a l l o c () ;
s t r u c t hdr cmn ∗ch = HDRCMN(p) ;
s t r u c t hdr ip ∗ ih = HDR IP(p) ;
s t r u c t hdr aodv rep ly ∗ rh = HDR AODV REPLY(p) ;

#i f d e f DEBUG
f p r i n t f (s tde r r , ” sending He l lo from %d at %.2 f \n” , index , Scheduler

: : i n s tance () . c l o ck ()) ;
#end i f // DEBUG

rh−>rp type = AODVTYPE HELLO;
//rh−>r p f l a g s = 0x00 ;
rh−>rp hop count = 1 ;
rh−>rp ds t = index ;
rh−>rp ds t s eqno = seqno ;
rh−>r p l i f e t i m e = (1 + ALLOWED HELLO LOSS) ∗ HELLO INTERVAL;

// ch−>uid () = 0 ;
ch−>ptype () = PT AODV;
ch−>s i z e () = IP HDR LEN + rh−>s i z e () ;
ch−>i f a c e () = −2;
ch−>e r r o r () = 0 ;
ch−>addr type () = NS AF NONE;
ch−>prev hop = index ; // AODV hack

ih−>saddr () = index ;
ih−>daddr () = IP BROADCAST;
ih−>spo r t () = RT PORT;
ih−>dport () = RT PORT;
ih−>t t l = 1 ;

i f (nIfaces) {
for (int i=0; i<nIfaces ; i++) {

Packet ∗p copy = p−>copy() ;
Scheduler : : instance() . schedule(target l i s t [i] , p copy , 0.0) ;

}
Packet : : free (p) ;

}

47

Chapter 5. Changes on Routing Protocol Code

else {
Scheduler : : instance() . schedule(target , p, 0.0) ;

}
}

Additionally we also need to take into account the changes which are required whenever
a unicast transmission needs to be performed (see Listing 5.4). For the AODV case, these
included the sendReply method and the forward method, which also includes some broadcast
mechanisms. Note that in both cases, we change the Iface index with the one which is
provided by the routing table entry.

Listing 5.14: (aodv.cc) Changes on the sendReply method

void
AODV: : sendReply (nsaddr t ipdst , u i n t 3 2 t hop count , nsaddr t rpdst

, u i n t 3 2 t rpseq , u i n t 3 2 t l i f e t im e , double timestamp) {
Packet ∗p = Packet : : a l l o c () ;
s t r u c t hdr cmn ∗ch = HDRCMN(p) ;
s t r u c t hdr ip ∗ ih = HDR IP(p) ;
s t r u c t hdr aodv rep ly ∗ rp = HDR AODV REPLY(p) ;
aodv r t ent ry ∗ r t = r t ab l e . r t l o okup (ipds t) ;

#i f d e f DEBUG
f p r i n t f (s tde r r , ” sending Reply from %d at %.2 f \n” , index , Scheduler

: : i n s tance () . c l o ck ()) ;
#end i f // DEBUG

a s s e r t (r t) ;

rp−>rp type = AODVTYPE RREP;
//rp−>r p f l a g s = 0x00 ;
rp−>rp hop count = hop count ;
rp−>rp ds t = rpdst ;
rp−>rp ds t s eqno = rpseq ;
rp−>r p s r c = index ;
rp−>r p l i f e t i m e = l i f e t i m e ;
rp−>rp timestamp = timestamp ;

// ch−>uid () = 0 ;
ch−>ptype () = PT AODV;
ch−>s i z e () = IP HDR LEN + rp−>s i z e () ;
ch−>i f a c e () = −2;
ch−>e r r o r () = 0 ;
ch−>addr type () = NS AF INET ;
ch−>next hop = rt−>r t nexthop ;
ch−>prev hop = index ; // AODV hack
ch−>d i r e c t i o n () = hdr cmn : :DOWN;

ih−>saddr () = index ;
ih−>daddr () = ipds t ;
ih−>spo r t () = RT PORT;
ih−>dport () = RT PORT;
ih−>t t l = NETWORKDIAMETER;

48

Chapter 5. Changes on Routing Protocol Code

i f (nIfaces) {
Scheduler : : instance () . schedule(target l i s t [rt−>rt interface] ,

p, 0) ;
} else {

Scheduler : : instance () . schedule(target , p, 0) ;
}

}

Listing 5.15: (aodv.cc) Changes on the forward method

void
AODV: : forward (aodv r t ent ry ∗ rt , Packet ∗p , double de lay) {
s t r u c t hdr cmn ∗ch = HDRCMN(p) ;
s t r u c t hdr ip ∗ ih = HDR IP(p) ;

i f (ih−>t t l == 0) {

#i f d e f DEBUG
f p r i n t f (s tde r r , ”%s : c a l l i n g drop () \n” , PRETTY FUNCTION) ;

#end i f // DEBUG

drop (p , DROP RTR TTL) ;
re turn ;

}

i f (ch−>ptype () != PT AODV && ch−>d i r e c t i o n () == hdr cmn : :UP &&
((u i n t 3 2 t) ih−>daddr () == IP BROADCAST)

| | (ih−>daddr () == her e . addr)) {
dmux −>r ecv (p , 0) ;
r e turn ;

}

i f (r t) {
a s s e r t (rt−>r t f l a g s == RTF UP) ;
rt−>r t e x p i r e = CURRENT TIME + ACTIVE ROUTE TIMEOUT;
ch−>next hop = rt−>r t nexthop ;

ch−>addr type () = NS AF INET ;
ch−>d i r e c t i o n () = hdr cmn : :DOWN; // important : change the

packet ’ s d i r e c t i o n
}
e l s e { // i f i t i s a broadcast packet

// a s s e r t (ch−>ptype () == PT AODV) ; // maybe a d i f f pkt type l i k e
ga f

a s s e r t (ih−>daddr () == (nsaddr t) IP BROADCAST) ;
ch−>addr type () = NS AF NONE;
ch−>d i r e c t i o n () = hdr cmn : :DOWN; // important : change the

packet ’ s d i r e c t i o n
}

i f (ih−>daddr () == (nsaddr t) IP BROADCAST) {
// I f i t i s a broadcast packet

49

Chapter 5. Changes on Routing Protocol Code

a s s e r t (r t == 0) ;
i f (ch−>ptype () == PT AODV) {

/∗
∗ J i t t e r the sending o f AODV broadcast packets by 10ms
∗/

i f (nIfaces) {
for (int i=0; i<nIfaces ; i++) {

Packet ∗p copy = p−>copy() ;
Scheduler : : instance() . schedule(target l i s t [i] ,

p copy , 0.01 ∗ Random: : uniform()) ;
}
Packet : : free (p) ;
} else {

Scheduler : : instance() . schedule(target , p, 0.01 ∗
Random: : uniform()) ;

}
} e l s e {

i f (nIfaces) {
for (int i=0; i<nIfaces ; i++) {

Packet ∗p copy = p−>copy() ;
Scheduler : : instance() . schedule(target l i s t [i] ,

p copy , 0.0) ;
}
Packet : : free (p) ;

} else {
Scheduler : : instance() . schedule(target , p, 0.0) ;

}
}

} e l s e { // Not a broadcast packet
i f (de lay > 0 . 0) {

i f (nIfaces) {
Scheduler : : instance() . schedule(target l i s t [rt−>

rt interface] , p, delay) ;
} else {

Scheduler : : instance() . schedule(target , p, delay) ;
}

} e l s e {
// Not a broadcast packet , no delay , send immediate ly

i f (nIfaces) {
Scheduler : : instance() . schedule(target l i s t [rt−>

rt interface] , p, 0) ;
} else {

Scheduler : : instance() . schedule(target , p, 0) ;
}

}
}

}

The last group of changes need to be made in order to correctly manage the routing table.
In particular, and as it was already described before (see Listing 5.5), whenever we add an
entry to the routing table we must include the interface which corresponds to such entry. We

50

Chapter 5. Changes on Routing Protocol Code

need to make the corresponding changes in the recvRequest and recvReply methods (see
Listings 5.16 and 5.17, respectively). Note that we also need to modify the handling of the
routing table, since we have to include the interface as an argument to the rt update method.

Listing 5.16: (aodv.cc) Changes on the recvRequest method

void
AODV: : recvRequest (Packet ∗p) {
s t r u c t hdr ip ∗ ih = HDR IP(p) ;
s t r u c t hdr cmn ∗ch = HDRCMN(p) ;
s t r u c t hdr aodv request ∗ rq = HDR AODV REQUEST(p) ;
u int8 t Iface ;
aodv r t ent ry ∗ r t ;

/∗
∗ Drop i f :
∗ − I ’m the source
∗ − I r e c en t l y heard t h i s r eque s t .
∗/

//DBG INFO(”Node %d r e c e i v e s r eque s t from %d” , addr () , rq−>r q s r c)
;

i f (rq−>r q s r c == index) {
#i f d e f DEBUG

f p r i n t f (s tde r r , ”%s : got my own REQUEST\n” , FUNCTION) ;
#end i f // DEBUG

Packet : : f r e e (p) ;
r e turn ;

}

i f (i d l ookup (rq−>r q s r c , rq−>r q b c a s t i d)) {

#i f d e f DEBUG
f p r i n t f (s tde r r , ”%s : d i s c a r d i ng r eque s t \n” , FUNCTION) ;

#end i f // DEBUG

Packet : : f r e e (p) ;
r e turn ;

}

/∗
∗ Cache the broadcast ID
∗/

i d i n s e r t (rq−>r q s r c , rq−>r q b c a s t i d) ;

/∗
∗ We are e i t h e r go ing to forward the REQUEST or generate a
∗ REPLY. Before we do anything , we make sure that the REVERSE
∗ route i s in the route t ab l e .
∗/

aodv r t ent ry ∗ r t0 ; // r t0 i s the r e v e r s e route

51

Chapter 5. Changes on Routing Protocol Code

r t0 = r tab l e . r t l o okup (rq−>r q s r c) ;
i f (r t0 == 0) { /∗ i f not in the route t ab l e ∗/
// c r e a t e an entry f o r the r e v e r s e route .

r t0 = r tab l e . r t add (rq−>r q s r c) ;
}

rt0−>r t e x p i r e = max(rt0−>r t e xp i r e , (CURRENT TIME +
REV ROUTE LIFE)) ;

i f ((rq−>r q s r c s e qno > rt0−>r t s eqno) | |
((rq−>r q s r c s e qno == rt0−>r t s eqno) &&
(rq−>rq hop count < rt0−>r t hops))) {

// I f we have a f r e s h e r seq no . or l e s s e r #hops f o r the
// same seq no . , update the r t entry . E l se don ’ t bother .

i f (nIfaces) {
Iface = ch−>i face ()−((Mac ∗) i fqueuel i st [0]−>target ())−>addr()

;
} else {

Iface = −1;
}
r t update (rt0 , rq−>r q s r c s eqno , rq−>rq hop count , ih−>saddr () ,

max(rt0−>r t e xp i r e , (CURRENT TIME + REV ROUTE LIFE))
, Iface) ;

i f (r t0−>r t r e q t imeou t > 0 . 0) {
// Reset the s o f t s t a t e and
// Set expi ry time to CURRENT TIME + ACTIVE ROUTE TIMEOUT
// This i s because route i s used in the forward d i r e c t i o n ,
// but only sour ce s get b ene f i t e d by t h i s change

rt0−>r t r e q c n t = 0 ;
rt0−>r t r e q t imeou t = 0 . 0 ;
rt0−>r t r e q l a s t t t l = rq−>rq hop count ;
rt0−>r t e x p i r e = CURRENT TIME + ACTIVE ROUTE TIMEOUT;

}

/∗ Find out whether any bu f f e r ed packet can b e n e f i t from the
∗ r e v e r s e route .
∗ May need some change in the f o l l ow ing code − Mahesh

09/11/99
∗/

a s s e r t (rt0−>r t f l a g s == RTF UP) ;
Packet ∗ bu f f e r ed pk t ;
whi l e ((bu f f e r ed pk t = rqueue . deque (rt0−>r t d s t))) {

i f (r t0 && (rt0−>r t f l a g s == RTF UP)) {
a s s e r t (rt0−>r t hops != INFINITY2) ;
forward (rt0 , bu f f e r ed pkt , NO DELAY) ;

}
}

}
// End f o r putt ing r e v e r s e route in r t t ab l e

52

Chapter 5. Changes on Routing Protocol Code

/∗
∗ We have taken care o f the r e v e r s e route s t u f f .
∗ Now see whether we can send a route r ep ly .
∗/

r t = r tab l e . r t l o okup (rq−>r q d s t) ;

// F i r s t check i f I am the de s t i n a t i o n . .

i f (rq−>r q d s t == index) {

#i f d e f DEBUG
f p r i n t f (s tde r r , ”%d − %s : d e s t i n a t i o n sending r ep ly \n” ,

index , FUNCTION) ;
#end i f // DEBUG

// Just to be sa fe , I use the max . Somebody may have
// incremented the dst seqno .
seqno = max(seqno , rq−>r q ds t s eqno)+1;
i f (seqno%2) seqno++;

sendReply (rq−>r q s r c , // IP Des t ina t i on
1 , // Hop Count
index , // Dest IP Address
seqno , // Dest Sequence Num
MY ROUTE TIMEOUT, // L i f e t ime
rq−>rq timestamp) ; // timestamp

Packet : : f r e e (p) ;
}

// I am not the de s t ina t i on , but I may have a f r e s h enough route .

e l s e i f (r t && (rt−>r t hops != INFINITY2) &&
(rt−>r t s eqno >= rq−>r q ds t s eqno)) {

// a s s e r t (rt−>r t f l a g s == RTF UP) ;
a s s e r t (rq−>r q d s t == rt−>r t d s t) ;
// a s s e r t ((rt−>r t s eqno %2) == 0) ; // i s the seqno even?
sendReply (rq−>r q s r c ,

r t−>r t hops + 1 ,
rq−>rq dst ,
r t−>r t seqno ,
(u i n t 3 2 t) (rt−>r t e x p i r e − CURRENT TIME) ,
// rt−>r t e x p i r e − CURRENT TIME,
rq−>rq timestamp) ;

// I n s e r t nexthops to RREQ source and RREQ de s t i na t i o n in the
// pr ecur so r l i s t s o f d e s t i n a t i o n and source r e s p e c t i v e l y
rt−>p c i n s e r t (rt0−>r t nexthop) ; // nexthop to RREQ source
rt0−>p c i n s e r t (rt−>r t nexthop) ; // nexthop to RREQ de s t i na t i o n

#i f d e f RREQ GRAT RREP

53

Chapter 5. Changes on Routing Protocol Code

sendReply (rq−>rq dst ,
rq−>rq hop count ,
rq−>r q s r c ,
rq−>r q s r c s eqno ,
(u i n t 3 2 t) (rt−>r t e x p i r e − CURRENT TIME) ,
// rt−>r t e x p i r e − CURRENT TIME,
rq−>rq timestamp) ;

#end i f

// TODO: send grat RREP to dst i f G f l a g s e t in RREQ us ing rq−>

r q s r c s eqno , rq−>rq hop counT

// DONE: Inc luded g r a tu i t o u s r e p l i e s to be sent as per IETF aodv
d r a f t s p e c i f i c a t i o n . As o f now , G f l a g has not been dynamica l ly
used and i s always s e t or r e s e t in aodv−packet . h −−− Anant

Utgikar , 09/16/02.

Packet : : f r e e (p) ;
}
/∗
∗ Can ’ t r ep ly . So forward the Route Request
∗/

e l s e {
ih−>saddr () = index ;
ih−>daddr () = IP BROADCAST;
rq−>rq hop count += 1 ;
// Maximum sequence number seen en route
i f (r t) rq−>r q ds t s eqno = max(rt−>r t seqno , rq−>r q ds t s eqno) ;
forward ((aodv r t ent ry ∗) 0 , p , DELAY) ;

}
}

Listing 5.17: (aodv.cc) Changes on the recvReply method

void
AODV: : recvReply (Packet ∗p) {
s t r u c t hdr cmn ∗ch = HDRCMN(p) ;
s t r u c t hdr ip ∗ ih = HDR IP(p) ;
s t r u c t hdr aodv rep ly ∗ rp = HDR AODV REPLY(p) ;
u int8 t Iface ;
aodv r t ent ry ∗ r t ;
char s upp r e s s r ep l y = 0 ;
double de lay = 0 . 0 ;

#i f d e f DEBUG
f p r i n t f (s tde r r , ”%d − %s : r e c e i v ed a REPLY\n” , index , FUNCTION

) ;
#end i f // DEBUG

/∗

54

Chapter 5. Changes on Routing Protocol Code

∗ Got a r ep ly . So r e s e t the ” s o f t s t a t e ” maintained f o r
∗ route r e que s t s in the r eque s t t ab l e . We don ’ t r e a l l y have
∗ have a s epa ra te r eque s t t ab l e . I t i s j u s t a part o f the
∗ r out ing t ab l e i t s e l f .
∗/

// Note that rp ds t i s the dest o f the data packets , not the
// the dest o f the rep ly , which i s the s r c o f the data packets .

//DBG INFO(” Receive r ep ly from ih−>s r c () ”) ;
r t = r t ab l e . r t l o okup (rp−>rp ds t) ;

/∗
∗ I f I don ’ t have a r t entry to t h i s host . . . adding
∗/

i f (r t == 0) {
r t = r t ab l e . r t add (rp−>rp ds t) ;

}

/∗
∗ Add a forward route t ab l e entry . . . here I am fo l l ow ing
∗ Perkins−Royer AODV paper almost l i t e r a l l y − SRD 5/99
∗/

i f ((rt−>r t s eqno < rp−>rp ds t s eqno) | | // newer route
((rt−>r t s eqno == rp−>rp ds t s eqno) &&
(rt−>r t hops > rp−>rp hop count))) { // sho r t e r or b e t t e r

route

// Update the r t entry

i f (nIfaces) {
Iface = ch−>i face ()−((Mac ∗) i fqueuel i st [0]−>target ())−>addr()

;
} else {

Iface = −1;
}
r t update (rt , rp−>rp ds t s eqno , rp−>rp hop count ,

rp−>rp s r c , CURRENT TIME + rp−>r p l i f e t im e , Iface) ;

// r e s e t the s o f t s t a t e
rt−>r t r e q c n t = 0 ;
rt−>r t r e q t imeou t = 0 . 0 ;
rt−>r t r e q l a s t t t l = rp−>rp hop count ;

i f (ih−>daddr () == index) { // I f I am the o r i g i n a l source
// Update the route d i s cove ry la t ency s t a t i s t i c s
// rp−>rp timestamp i s the time o f r eque s t o r i g i n a t i o n

rt−>r t d i s c l a t e n c y [(uns igned char) rt−>h i s t i n d x] = (
CURRENT TIME − rp−>rp timestamp)

/ (double) rp−>

rp hop count ;
// increment indx f o r next time

55

Chapter 5. Changes on Routing Protocol Code

rt−>h i s t i n d x = (rt−>h i s t i n d x + 1) % MAX HISTORY;
}

/∗
∗ Send a l l packets queued in the s endbu f f e r de s t ined f o r
∗ t h i s d e s t i n a t i o n .
∗ XXX − observe the ” second ” use o f p .
∗/

Packet ∗buf pkt ;
whi l e ((buf pkt = rqueue . deque (rt−>r t d s t))) {

i f (r t−>r t hops != INFINITY2) {
a s s e r t (rt−>r t f l a g s == RTF UP) ;

// Delay them a l i t t l e to help ARP. Otherwise ARP
// may drop packets . −SRD 5/23/99

forward (rt , buf pkt , de lay) ;
de lay += ARP DELAY;

}
}

}
e l s e {
s upp r e s s r ep l y = 1 ;

}

/∗
∗ I f r ep ly i s f o r me , d i s ca rd i t .
∗/

i f (ih−>daddr () == index | | s upp r e s s r ep l y) {
Packet : : f r e e (p) ;

}
/∗
∗ Otherwise , forward the Route Reply .
∗/

e l s e {
// Find the r t entry

aodv r t ent ry ∗ r t0 = r tab l e . r t l o okup (ih−>daddr ()) ;
// I f the r t i s up , forward
i f (r t0 && (rt0−>r t hops != INFINITY2)) {

a s s e r t (rt0−>r t f l a g s == RTF UP) ;
rp−>rp hop count += 1 ;
rp−>r p s r c = index ;
forward (rt0 , p , NO DELAY) ;
// I n s e r t the nexthop towards the RREQ source to
// the pr ecur so r l i s t o f the RREQ de s t i na t i o n
rt−>p c i n s e r t (rt0−>r t nexthop) ; // nexthop to RREQ source

}
e l s e {
// I don ’ t know how to forward . . drop the r ep ly .

#i f d e f DEBUG
f p r i n t f (s tde r r , ”%s : dropping Route Reply\n” , FUNCTION) ;

#end i f // DEBUG
drop (p , DROP RTR NO ROUTE) ;

56

Chapter 5. Changes on Routing Protocol Code

}
}

}

Last, but not least, we must adapt the rt update method, according to the new definition
which was shown in Listing 5.8.

Listing 5.18: (aodv.cc) Changes on the rt update method

void
AODV: : r t update (aodv r t ent ry ∗ rt , u i n t 3 2 t seqnum , u i n t 1 6 t

metr ic , nsaddr t nexthop , double exp i r e t ime , u int8 t
interface) {

rt−>r t s eqno = seqnum ;
rt−>r t hops = metr ic ;
r t−>r t f l a g s = RTF UP;
rt−>r t nexthop = nexthop ;
rt−>r t e x p i r e = exp i r e t ime ;
rt−>rt interface = interface ;

}

5.4.3 Changes on the routing table implementation aodv rtable.[cc,h]

As already anticipated before, the way the routing table is handled must be adapted according
to the multi-interface extension. The only change which needs to be done is to uncommment
the interface component of the route table entry (aodv rt entry).

Listing 5.19: (aodv rtable.h) Changes on the aodv rt entry class definition

c l a s s aodv r t ent ry {
f r i e n d c l a s s aodv r tab l e ;
f r i e n d c l a s s AODV;
f r i e n d c l a s s LocalRepairTimer ;

pub l i c :
a odv r t ent ry () ;
˜ aodv r t ent ry () ;

vo id nb in s e r t (nsaddr t id) ;
AODV Neighbor∗ nb lookup (nsaddr t id) ;

vo id p c i n s e r t (nsaddr t id) ;
AODV Precursor∗ pc lookup (nsaddr t id) ;
vo id pc de l e t e (nsaddr t id) ;
vo id pc de l e t e (vo id) ;
bool pc empty (void) ;

double r t r e q t imeou t ; // when I can send
another req

u i n t 8 t r t r e q c n t ; // number o f route
r e que s t s

57

Chapter 5. Changes on Routing Protocol Code

pro te c t ed :
LIST ENTRY(aodv r t ent ry) r t l i n k ;

nsaddr t r t d s t ;
u i n t 3 2 t r t s eqno ;
u int8 t rt interface ;
u i n t 1 6 t r t hops ; // hop count
i n t r t l a s t h o p c o un t ; // l a s t v a l i d hop

count
nsaddr t r t nexthop ; // next hop IP

addres s
/∗ l i s t o f p r e cu r s o r s ∗/
aodv pr ecur so r s r t p c l i s t ;
double r t e x p i r e ; // when entry

exp i r e s
u i n t 8 t r t f l a g s ;

#de f i n e RTFDOWN 0
#de f i n e RTF UP 1
#de f i n e RTF IN REPAIR 2

/∗
∗ Must r e c e i v e 4 e r r o r s with in 3 seconds in order to mark
∗ the route down .

u i n t 8 t r t e r r o r s ; // e r r o r count
double r t e r r o r t ime ;

#de f i n e MAX RT ERROR 4 // e r r o r s
#de f i n e MAX RT ERROR TIME 3 // seconds

∗/

#de f i n e MAX HISTORY 3
double r t d i s c l a t e n c y [MAX HISTORY] ;
char h i s t i n d x ;
i n t r t r e q l a s t t t l ; // l a s t t t l va lue

used
// l a s t few route d i s cove ry l a t e n c i e s
// double r t l e n g t h [MAX HISTORY] ;
// l a s t few route l eng ths

/∗
∗ a l i s t o f ne ighbors that are us ing t h i s route .
∗/

aodv ncache r t n b l i s t ;
} ;

And, in order to ensure a correct operation, we should initialize this member to 255
(non-valid value) in the corresponding constructor.

Listing 5.20: (aodv rtable.cc) Changes on the aodv rt entry constructor

aodv r t ent ry : : a odv r t ent ry ()
{

58

Chapter 5. Changes on Routing Protocol Code

i n t i ;

r t r e q t imeou t = 0 . 0 ;
r t r e q c n t = 0 ;

r t d s t = 0 ;
r t s eqno = 0 ;
rt interface = 255;
r t hops = r t l a s t h o p c o un t = INFINITY2 ;
r t nexthop = 0 ;
LIST INIT(& r t p c l i s t) ;
r t e x p i r e = 0 . 0 ;
r t f l a g s = RTFDOWN;

/∗
r t e r r o r s = 0 ;
r t e r r o r t ime = 0 . 0 ;
∗/

f o r (i =0; i < MAX HISTORY; i++) {
r t d i s c l a t e n c y [i] = 0 . 0 ;

}
h i s t i n d x = 0 ;
r t r e q l a s t t t l = 0 ;

LIST INIT(& r t n b l i s t) ;
}

59

Chapter 6

Scenario Script

One of the cornerstones of this work has been to create a flexible multi-interface model where
the number of interfaces per node, as well as the overall number of channels which is being
used within the scenario can be easily configured by the user, by tweaking the Tcl script
which establishes the simulation scenario.

At the beginning of the script we must initialize the values that will be used afterwards
as arguments to the node-config command, as it is usually done. Obviously, one of the pa-
rameters that must be included is the channel type, which has to be set to WirelessChannel.
Furthermore, there is a new parameter, required to set the maximum number of interfaces
that the nodes within the scenario may use. In the example below, this parameter is set to 3.

Listing 6.1: (scen-script) Initialization of simulation variables

s e t va l (chan) Channel/Wire lessChannel ;
set val (ni) 3 ;
s e t va l (nn) 20 ;

As has been already mentioned, the creation of several channels is done from the tcl

scenario script. Listing 6.2 shows how channels are created (as many as the maximum number
of interfaces previously established), using a for loop.

Listing 6.2: (scen-script) Creation of wireless channels

f o r { s e t i 0} { $ i < $va l (n i) } { i n c r i } {
s e t chan ($ i) [new $va l (chan)]

}

In order to ensure that an appropriate memory management is performed, the initialization
of the god has to include as many interfaces as there may be overall, as shown below:

Listing 6.3: (scen-script) Initialization of the god

create−god [expr $va l (nn) ∗$va l (n i)]

As we explained in Chapter 3, a new procedure, to allow the inclusion of the number of
interfaces as an argument to node-config, was added to the ns-lib.tcl. Listing 6.4 shows
how the number of interfaces is included as a new argument. It is also worth mentioning that

60

Chapter 6. Scenario Script

we do not specify the type of channel, but rather one channel, this was done so as not to
require too many changes within the corresponding tcl procedure and, as will be seen later,
the channels are added afterwards, before actually creating the wireless node.

Listing 6.4: (scen-script) node-config

$ns node−config −adhocRouting $va l (rp) \
−llType $va l (l l) \
−macType $va l (mac) \
−ifqType $va l (i f q) \
− ifqLen $va l (i f q l e n) \
−antType $va l (ant) \
−propType $va l (prop) \
−phyType $va l (n e t i f) \
−channel $chan (0) \
−topoInstance $topo \
−agentTrace ON \
−routerTrace ON \
−macTrace OFF \
−movementTrace OFF \
−ifNum $val (ni)

Indeed, before creating a node we need to indicate how many interfaces it has, using the
new procedure change-numifs, as well as associating them with the corresponding channel,
i.e. by means of the add-channel procedure. These procedures have been added into the
ns-lib.tcl file, and have been described in Chapter 3.

Thanks to the model flexibility, we can perform quite a broad range of combinations. For
instance, Listing 6.5 shows an easy way to configure all nodes so as they use the same number
of interfaces, connected to all previously defined wireless channels.

Listing 6.5: (scen-script) Creating a number of nodes with the same number of interfaces
associated to the same wireless channels

$ns change−numifs $va l (n i)
f o r { s e t i 0} { $ i < $va l (n i) } { i n c r i } {

$ns add−channel $ i $chan ($ i)
}
f o r { s e t i 0} { $ i < $va l (nn) } { i n c r i } {

s e t node ($ i) [$ns node]
$node ($ i) random−motion 0

}

However, we may want to have a more flexible configuration, in which some nodes have a
different number of interfaces than the others, connected to different wireless channels. As an
example, Listing 6.6 shows a possible configuration, in which the first node has 2 interfaces
(associated to channels 0 and 2), while the second one only has one interface, associated to
channel 2.

Listing 6.6: (scen-script) Creating two nodes with different number of interfaces

$ns change−numifs 2
$ns add−channel 0 $chan (0)

61

Chapter 6. Scenario Script

$ns add−channel 1 $chan (2)
s e t node (0) [$ns node]
$node (0) random−motion 0

$ns change−numifs 1
$ns add−channel 0 $chan (2)
s e t node (1) [$ns node]
$node (1) random−motion 0

62

Chapter 7

Future Work

The work that has been accomplished is, already, quite flexible; the different interfaces can be
accessed from the Tcl script, bringing about the possibility to modify some of their working
parameters (e.g. transmission power or coverage, etc) on a rather straightforward way. One
additional aspect that might be quite interesting would be the extension of the whole model
so as to really include multiple technologies, and not only different interfaces belonging to the
same technology, as has been our case. Another topic which may be of interest would be to
address the same changes on the SRNode architecture, so that source routing protocols could
also benefit from the new feature.

Anyhow, new ideas to improve the current model and to extend its capabilities are more
than welcome.

63

Bibliography

[1] The Enhanced Network Simulator. http://www.cse.iitk.ac.in/users/braman/tens.

[2] Tzi cker Chiueh, Ashish Raniwala, Rupa Krishnan, and Kartik Gopalan. Hyacinth:
An IEEE 802.11-based Multi-channel Wireless Mesh Network. http://www.ecsl.cs.

sunysb.edu/multichannel, October 2005.

[3] Bo Wang. NS2 Notebook: Multi-channel Multi-interface Simulation in NS2 (2.29). http:
//www.cse.msu.edu/~wangbo1/ns2/nshowto8.html.

[4] Dapeng Wang. Make “hyacinth” run on Debian NS-2.29.2. http://my.opera.com/

HenryFD/blog/show.dml/202861, March 2006.

[5] The VINT Project. The ns Manual, December 2000.

[6] Francisco J. Ros and Pedro M. Ruiz. Implementing a new MANET unicast routing
protocol in ns2. Technical report, University of Murcia, December 2004.

64

Appendix A

GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The “Document”, below, refers to any such manual or
work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

65

Appendix A. GNU Free Documentation License

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under this
License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at
most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in
a format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML
or XML for which the DTD and/or processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the title
page. For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title ei-
ther is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such as
“Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

66

Appendix A. GNU Free Documentation License

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use technical measures to ob-
struct or control the reading or further copying of the copies you make or distribute. However,
you may accept compensation in exchange for copies. If you distribute a large enough number
of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a com-
plete Transparent copy of the Document, free of added material. If you use the latter option,
you must take reasonably prudent steps, when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will remain thus accessible at the stated lo-
cation until at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you with
an updated version of the Document.

4. MODIFICATIONS

67

Appendix A. GNU Free Documentation License

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public per-
mission to use the Modified Version under the terms of this License, in the form shown
in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given on
the Title Page. If there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of
the section, and preserve in the section all the substance and tone of each of the con-
tributor acknowledgements and/or dedications given therein.

68

Appendix A. GNU Free Documentation License

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but en-
dorsements of your Modified Version by various parties–for example, statements of peer re-
view or that the text has been approved by an organization as the authoritative definition of
a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already includes a cover
text for the same cover, previously added by you or by arrangement made by the same entity
you are acting on behalf of, you may not add another; but you may replace the old one, on
explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to the section titles in
the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any sections
Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete all
sections Entitled “Endorsements”.

69

Appendix A. GNU Free Documentation License

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various documents
with a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal rights
of the compilation’s users beyond what the individual works permit. When the Document
is included in an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover Texts
may be placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations of
some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License. How-
ever, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

70

Appendix A. GNU Free Documentation License

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See http:

//www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document

specifies that a particular numbered version of this License “or any later version” applies to it,
you have the option of following the terms and conditions either of that specified version or of
any later version that has been published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

71

